Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix token usage response #348

Merged
merged 1 commit into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion llm_core/.env.example
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,9 @@ DATABASE_URL=sqlite:///../data/data.sqlite

# Default model to use
# See below for options, available models are also logged on startup
LLM_DEFAULT_MODEL="azure_openai_gpt-35-turbo"
LLM_DEFAULT_MODEL="azure_openai_gpt-4o"
LLM_DEFAULT_MODEL_COST_PER_MILLION_INPUT_TOKEN=5
LLM_DEFAULT_MODEL_COST_PER_MILLION_OUTPUT_TOKEN=15

# Enable LLM-as-a-judge approach 0 = disabled, 1 = enabled
LLM_ENABLE_LLM_AS_A_JUDGE=1
Expand Down
32 changes: 21 additions & 11 deletions llm_core/llm_core/models/callbacks.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
import os

from langchain.callbacks.base import BaseCallbackHandler
from langchain_core.outputs import LLMResult
from langchain_core.messages.ai import UsageMetadata
Expand All @@ -7,27 +9,35 @@

class UsageHandler(BaseCallbackHandler):
def on_llm_end(self, response: LLMResult, **kwargs) -> None:
cost_per_million_input_tokens = float(os.environ.get("LLM_DEFAULT_MODEL_COST_PER_MILLION_INPUT_TOKEN", 0.0))
cost_per_million_output_tokens = float(os.environ.get("LLM_DEFAULT_MODEL_COST_PER_MILLION_OUTPUT_TOKEN", 0.0))

meta = get_meta()

total_usage = meta.get("total_usage", {"input_tokens": 0, "output_tokens": 0, "total_tokens": 0})
llm_calls = meta.get("llm_calls", [])
total_usage = meta.get("totalUsage", {"numInputTokens": 0, "numOutputTokens": 0, "numTotalTokens": 0, "cost": 0 })
llm_calls = meta.get("llmRequests", [])

for generations in response.generations:
for generation in generations:
message = generation.dict()["message"]
generation_usage: UsageMetadata = message["usage_metadata"]
model_name = message["response_metadata"].get("model_name", None)

total_usage["input_tokens"] += generation_usage["input_tokens"]
total_usage["output_tokens"] += generation_usage["output_tokens"]
total_usage["total_tokens"] += generation_usage["total_tokens"]
total_usage["numInputTokens"] += generation_usage["input_tokens"]
total_usage["numOutputTokens"] += generation_usage["output_tokens"]
total_usage["numTotalTokens"] += generation_usage["total_tokens"]

total_usage["cost"] += int(generation_usage["input_tokens"]) * cost_per_million_output_tokens / 1_000_000
total_usage["cost"] += int(generation_usage["output_tokens"]) * cost_per_million_output_tokens / 1_000_000

llm_calls.append({
"model_name": model_name,
"input_tokens": generation_usage["input_tokens"],
"output_tokens": generation_usage["output_tokens"],
"total_tokens": generation_usage["total_tokens"],
"model": model_name,
"costPerMillionInputToken": cost_per_million_input_tokens,
"costPerMillionOutputToken": cost_per_million_output_tokens,
"numInputTokens": generation_usage["input_tokens"],
"numOutputTokens": generation_usage["output_tokens"],
"numTotalTokens": generation_usage["total_tokens"],
})

emit_meta("total_usage", total_usage)
emit_meta("llm_calls", llm_calls)
emit_meta("totalUsage", total_usage)
emit_meta("llmRequests", llm_calls)
2 changes: 2 additions & 0 deletions modules/modeling/module_modeling_llm/.env.example
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@ DATABASE_URL=sqlite:///../data/data.sqlite
# Default model to use
# See below for options, available models are also logged on startup
LLM_DEFAULT_MODEL="azure_openai_gpt-4o"
LLM_DEFAULT_MODEL_COST_PER_MILLION_INPUT_TOKEN=5
LLM_DEFAULT_MODEL_COST_PER_MILLION_OUTPUT_TOKEN=15

# Enable LLM-as-a-judge approach 0 = disabled, 1 = enabled
LLM_ENABLE_LLM_AS_A_JUDGE=1
Expand Down
4 changes: 3 additions & 1 deletion modules/programming/module_programming_llm/.env.example
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,9 @@ DATABASE_URL=sqlite:///../data/data.sqlite

# Default model to use
# See below for options, available models are also logged on startup
LLM_DEFAULT_MODEL="azure_openai_gpt-35"
LLM_DEFAULT_MODEL="azure_openai_gpt-4o"
LLM_DEFAULT_MODEL_COST_PER_MILLION_INPUT_TOKEN=5
LLM_DEFAULT_MODEL_COST_PER_MILLION_OUTPUT_TOKEN=15

# Standard OpenAI (Non-Azure) [leave blank if not used]
# Model names prefixed with `openai_` followed by the model name, e.g. `openai_text-davinci-003`
Expand Down
4 changes: 3 additions & 1 deletion modules/text/module_text_llm/.env.example
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,9 @@ DATABASE_URL=sqlite:///../data/data.sqlite

# Default model to use
# See below for options, available models are also logged on startup
LLM_DEFAULT_MODEL="azure_openai_gpt-35-turbo"
LLM_DEFAULT_MODEL="azure_openai_gpt-4o"
LLM_DEFAULT_MODEL_COST_PER_MILLION_INPUT_TOKEN=5
LLM_DEFAULT_MODEL_COST_PER_MILLION_OUTPUT_TOKEN=15

# Enable LLM-as-a-judge approach 0 = disabled, 1 = enabled
LLM_ENABLE_LLM_AS_A_JUDGE=1
Expand Down
Loading