Vitesse du vent = Wind speed Col du Lac Blanc (Alpes = location) Work in progress
Ongoing study - PhD Louis Le Toumelin - [email protected]
Supervisors: Isabelle Gouttevin, Fatima Karbou
Centre Etudes de la Neige (Snow Research Center) - CNRM - CNRS - Météo-France
├── LICENSE <- To be created
│
├── README.md <- File describing the github repository. You are reading it right now.
│
├── downscale_
│ ├── downscale <- downscale module
│ │ ├── data_source <- Process different types of data (NWP, DEM, observations...)
│ │ ├── eval <- Evaluate predictions (process bias, RMSE...)
│ │ ├── operators <- Downscaling strategy (Helbig, Devine, MicroMet...)
│ │ ├── test <- Test the code
│ │ ├── utils <- Utils function
│ │ └── visu <- Visualize plots
│ │ ├── __init__.py <- To create a module
│ ├── pipeline <- Scripts using the downscale module: good starting point
│
│
├── pre_process <- Pre-process data before training
│
├── train <- Train models
│ ├── Metrics <- RMSE, bias etc
│ ├── Models <- UNet, VCD
│ ├── Prm <- Define parameters for the training
│ ├── Slurm <- Commands to launch training on supercomputers
│ ├── Test <- Evaluate training
│ ├── Type_of_training <- Different ways to categorize data and then launch training
│ └── Utils <- Utility functions
│
├── WindNinja_learning <- Launch WindNinja simulation with python (ongoing project)
│
├── .gitignore <- Files ignored during git version control
│
├── __init__.py <- To create a module
│
├── model <- Tensorflow model
│
└── devine_cnn.yml <- An example of working conda environment for this project
Where I do some pre-processing to organize data
pre_process/
Training (performed on GPU)
train/
Predictions on real topographies + result analysis
downscale_/