Skip to content

Integrate LLVM at 8885b5c0626065274cb8f8a634d45779a0f6ff2b #4089

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 12, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion externals/llvm-project
Submodule llvm-project updated 3017 files
52 changes: 41 additions & 11 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
@@ -1848,22 +1848,52 @@ class ConvertAtenMatmulBaseOp : public OpConversionPattern<AtenOpT> {
SmallVector<int64_t> matmulOutputShape(
{matmulLhsShape[0], matmulLhsShape[1], matmulRhsShape[2]});
Type outputElemTy;
if (isa<mlir::FloatType>(lhsElemTy)) {
outputElemTy = lhsElemTy;
} else { // qint8 emits i32 matmul output

bool isInputElemTyQInt8 = false;
if (isa<mlir::quant::UniformQuantizedType>(lhsElemTy)) {
mlir::quant::UniformQuantizedType inputQTy =
dyn_cast<mlir::quant::UniformQuantizedType>(lhsElemTy);
if (inputQTy.getStorageTypeIntegralWidth() == 8)
isInputElemTyQInt8 = true;
}

if (isInputElemTyQInt8) {
// qint8 emits i32 matmul output
outputElemTy = rewriter.getIntegerType(32);
} else {
outputElemTy = lhsElemTy;
}

auto mmOutputTy = RankedTensorType::get(
makeShapeLLVMCompatible(matmulOutputShape), outputElemTy);
auto mmOpResult =
rewriter
.create<tosa::MatMulOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
mmOutputTy),
matmulLhs, matmulRhs)
.getResult();

Value mmOpResult;
if (!isInputElemTyQInt8) {
// LHS and RHS tensors' zero points must be zero for non-int8 types
Value lhsZp =
tosa::createZeroPointTensor(rewriter, op->getLoc(), lhsElemTy, 0)
.value();
Value rhsZp =
tosa::createZeroPointTensor(rewriter, op->getLoc(), rhsElemTy, 0)
.value();
mmOpResult =
rewriter
.create<tosa::MatMulOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
mmOutputTy),
matmulLhs, matmulRhs, lhsZp, rhsZp)
.getResult();
} else {
mmOpResult =
rewriter
.create<tosa::MatMulOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
mmOutputTy),
matmulLhs, matmulRhs)
.getResult();
}

// Perform the reshape to output shape. This is always required unless max
// input rank=3 and there was no broadcasting, in which case the tosa.matmul
74 changes: 59 additions & 15 deletions lib/Conversion/TorchToTosa/TosaLegalizeUtils.cpp
Original file line number Diff line number Diff line change
@@ -15,6 +15,21 @@
namespace mlir {
namespace tosa {

Value buildRescaleMultiplier(bool scale32, PatternRewriter &rewriter,
Operation *op, ArrayRef<int32_t> multipliers) {
if (scale32) {
return tosa::getConstTensor<int32_t>(
rewriter, op, multipliers,
{static_cast<int64_t>(multipliers.size())})
.value();
} else {
SmallVector<int16_t> vec(multipliers.begin(), multipliers.end());
return tosa::getConstTensor<int16_t>(rewriter, op, vec,
{static_cast<int64_t>(vec.size())})
.value();
}
}

// Create a TOSA rescale op from input framework tensor, zero points and
// rounding mode
Value buildRescale(PatternRewriter &rewriter, Operation *op,
@@ -28,14 +43,22 @@ Value buildRescale(PatternRewriter &rewriter, Operation *op,

computeMultiplierAndShift(scale, multiplier, shift, scale_width);

Value multiplier_val =
buildRescaleMultiplier(scale32, rewriter, op, {multiplier});
auto shift_val = tosa::getConstTensor<int8_t>(
rewriter, op, {static_cast<int8_t>(shift)}, {1})
.value();

bool input_unsigned = input_val.getType().isUnsignedInteger();
bool output_unsigned = output_type.isUnsignedInteger();

auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
rewriter, op->getLoc(), output_type, input_val,
rewriter, op->getLoc(), output_type, input_val, multiplier_val, shift_val,
rewriter.getI32IntegerAttr(static_cast<int32_t>(input_zp)),
rewriter.getI32IntegerAttr(static_cast<int32_t>(output_zp)),
rewriter.getDenseI32ArrayAttr({multiplier}),
rewriter.getDenseI8ArrayAttr({static_cast<int8_t>(shift)}),
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(double_round),
rewriter.getBoolAttr(false));
rewriter.getBoolAttr(false), rewriter.getBoolAttr(input_unsigned),
rewriter.getBoolAttr(output_unsigned));

return rescale_op.getResult();
}
@@ -70,6 +93,9 @@ Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
bool scale32 = isScale32(output_qtype);
int32_t scale_width = scale32 ? 32 : 16;

bool input_unsigned = input_qtype.isUnsignedInteger();
bool output_unsigned = output_qtype.isUnsignedInteger();

if (auto weight_per_tensor_qtype =
dyn_cast<mlir::quant::UniformQuantizedType>(
weight_type.getElementType())) {
@@ -83,13 +109,19 @@ Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,

computeMultiplierAndShift(op_tensor_scale, multiplier, shift, scale_width);

Value multiplier_val =
buildRescaleMultiplier(scale32, rewriter, op, {multiplier});
auto shift_val = tosa::getConstTensor<int8_t>(
rewriter, op, {static_cast<int8_t>(shift)}, {1})
.value();

auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
rewriter, op->getLoc(), output_type, conv_val,
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
rewriter.getDenseI32ArrayAttr({multiplier}),
rewriter.getDenseI8ArrayAttr({static_cast<int8_t>(shift)}),
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(true),
rewriter.getBoolAttr(false));
rewriter, op->getLoc(), output_type, conv_val, multiplier_val,
shift_val, rewriter.getI32IntegerAttr(0),
rewriter.getI32IntegerAttr(output_zp), rewriter.getBoolAttr(scale32),
rewriter.getBoolAttr(true), rewriter.getBoolAttr(false),
rewriter.getBoolAttr(input_unsigned),
rewriter.getBoolAttr(output_unsigned));

return rescale_op.getResult();

@@ -120,12 +152,20 @@ Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
shift_arr.push_back(static_cast<int8_t>(shift));
}

Value multiplier_val =
buildRescaleMultiplier(scale32, rewriter, op, multiplier_arr);
auto shift_val =
tosa::getConstTensor<int8_t>(rewriter, op, shift_arr,
{static_cast<int64_t>(shift_arr.size())})
.value();

auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
rewriter, op->getLoc(), output_type, conv_val,
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
rewriter.getDenseI32ArrayAttr(multiplier_arr),
rewriter.getDenseI8ArrayAttr(shift_arr), rewriter.getBoolAttr(scale32),
rewriter.getBoolAttr(true), rewriter.getBoolAttr(true));
rewriter, op->getLoc(), output_type, conv_val, multiplier_val,
shift_val, rewriter.getI32IntegerAttr(0),
rewriter.getI32IntegerAttr(output_zp), rewriter.getBoolAttr(scale32),
rewriter.getBoolAttr(true), rewriter.getBoolAttr(true),
rewriter.getBoolAttr(input_unsigned),
rewriter.getBoolAttr(output_unsigned));

return rescale_op.getResult();

@@ -408,6 +448,10 @@ template std::optional<Value>
getConstTensor<int8_t>(PatternRewriter &, Operation *, ArrayRef<int8_t> vec,
ArrayRef<int64_t> shape, std::optional<Type> dtype);

template std::optional<Value>
getConstTensor<int16_t>(PatternRewriter &, Operation *, ArrayRef<int16_t> vec,
ArrayRef<int64_t> shape, std::optional<Type> dtype);

template std::optional<Value>
getConstTensor<int32_t>(PatternRewriter &, Operation *, ArrayRef<int32_t> vec,
ArrayRef<int64_t> shape, std::optional<Type> dtype);
2 changes: 0 additions & 2 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
@@ -3472,7 +3472,6 @@
"AtenMatmulQint8VM_basic",
"AtenMatmulQint8VV_basic",
"AtenMatmulQint8_basic",
"AtenMmIntTypes_basic",
"AtenMmQMixedSigni8_basic",
"AtenMmQint8_basic",
"AtenMmQuint8_basic",
@@ -3496,7 +3495,6 @@
"BincountMinlengthModule_basic",
"BincountModule_basic",
"BincountStaticSizeModule_basic",
"BmmIntModule_basic",
"BoolFloatConstantModule_basic",
"BoolFloatFalseModule_basic",
"BoolFloatTrueModule_basic",
Loading