This is an open-source benchmark for evaluating the performance of vector databases, the main functions are as follows:
- Specify the dataset and parameters to calculate the Search Recall
- Specify the search vectors and parameters, and calculate the QPS
-
Logs of the benchmarks are stored in the ./results/result.*
-
Datasets of the benchmarks are stored in the ./datasets/dataset_files/
-
Configs of the benchmarks are stored in the ./configurations/*.yaml
python3 (>=3.8)
pip install -r requirements.txt
This method mainly provides the calculation of the search recall value of the server for the supported datasets and configuration parameters, so as to select index parameters and search parameters with a higher recall rate.
For parameter definitions, refer to the configuration file: ./configurations/milvus_recall.yaml
run help: python3 main.py recall --help
Usage: main.py recall [OPTIONS]
:param host: server host
:param engine: only support milvus
:param dataset_name: four datasets are available to choose from as follows:
glove-25-angular / glove-100-angular / gist-960-euclidean / deep-image-96-angular
:param prepare: search an existing collection without skipping data
preparation
:param config_name: specify the name of the configuration file in the
configurations directory, and only use this configuration file; if
not specified, all milvus_recall*.yaml in the configuration directory will
be used.
Options:
--host TEXT [default: localhost]
--engine TEXT [default: milvus]
--dataset-name TEXT [default: glove-25-angular]
--prepare / --no-prepare [default: prepare]
--config-name TEXT
--help Show this message and exit.
example: python3 main.py recall --host localhost --engine milvus --dataset-name glove-25-angular
This method is used to perform concurrent search operations on an existing collection and given concurrency parameters, and print concurrency test results such as RPS.
For parameter definitions, refer to the configuration file: ./configurations/milvus_concurrency.yaml
run help: python3 main.py concurrency --help
Usage: main.py concurrency [OPTIONS]
:param host: server host
:param engine: only support milvus
:param config_name: specify the name of the configuration file in the
configurations directory, and only use this configuration file; if
not specified, all milvus_concurrency*.yaml in the configuration directory
will be used.
Options:
--host TEXT [default: localhost]
--engine TEXT [default: milvus]
--config-name TEXT
--help Show this message and exit.
example: python3 main.py concurrency --host localhost --engine milvus
- reqs: the total number of api requests
- fails: the total number of api failed requests
- Avg: average response time of interface within statistical interval
- Min: minimum response time of interface within statistical interval
- Max: maximum response time of interface within statistical interval
- Median: median response time of interface within statistical interval
- TP99: TP99 response time of interface within statistical interval
- req/s: the number of requests per second for the api in the statistical interval
- failures/s: the number of failed requests per second of the api within the statistical interval
INFO: [ParserResult] Starting sync report, interval:20s, intermediate state results are available for reference (parser_result.py:50)
INFO: Name # reqs # fails | Avg Min Max Median TP99 | req/s failures/s (data_client.py:42)
INFO: --------------------------------------------------------------------------------------------------------------------- (data_client.py:46)
INFO: Name # reqs # fails | Avg Min Max Median TP99 | req/s failures/s (data_client.py:42)
INFO: search 1467 0(0.00%) | 131 43 1291 92 823 | 73.35 0.00 (data_client.py:44)
INFO: Name # reqs # fails | Avg Min Max Median TP99 | req/s failures/s (data_client.py:42)
INFO: search 2706 0(0.00%) | 154 47 1040 118 703 | 61.95 0.00 (data_client.py:44)
INFO: Name # reqs # fails | Avg Min Max Median TP99 | req/s failures/s (data_client.py:42)
INFO: search 4209 0(0.00%) | 137 44 1703 97 1167 | 75.15 0.00 (data_client.py:44)
INFO: [MultiProcessConcurrent] End concurrent pool (multi_process.py:49)
INFO: ------------------------------------------------- Print final status ------------------------------------------------ (data_client.py:49)
INFO: Name # reqs # fails | Avg Min Max Median TP99 | req/s failures/s (data_client.py:50)
INFO: search 4279 0(0.00%) | 139 43 1703 100 785 | 70.53 0.00 (data_client.py:52)
If you want to perform a concurrency test based on the search parameter with the most appropriate recall value, you can update the search parameters of the recall scene to milvus_concurrency.yaml, and then conduct a concurrency test