Skip to content
/ embs Public

embs is a Python toolkit for retrieving documents (via Docsifer), generating embeddings (via Lightweight Embeddings API), and ranking texts with an optional caching system.

License

Notifications You must be signed in to change notification settings

lh0x00/embs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

embs

PyPI License Downloads

embs is a powerful Python library for document retrieval, embedding, and ranking, making it easier to build Retrieval-Augmented Generation (RAG) systems, chatbots, and semantic search engines.

Why Choose embs?

  • Web & Local Document Search:

    • DuckDuckGo-powered web search retrieves and ranks relevant documents.
    • Supports PDFs, Word, HTML, Markdown, and more.
  • Optimized for RAG, Chatbots & Multilingual Search:

    • Automatic document chunking (Splitter) for improved retrieval accuracy.
    • Rank documents by relevance to a query.
    • Strong multilingual model support for global applications. ✅ Supported multilingual models:
      • snowflake-arctic-embed-l-v2.0
      • bge-m3
      • gte-multilingual-base
      • paraphrase-multilingual-MiniLM-L12-v2
      • paraphrase-multilingual-mpnet-base-v2
      • multilingual-e5-small
      • multilingual-e5-base
      • multilingual-e5-large
  • Fast & Efficient:

    • Cache support (in-memory & disk) for faster queries.
    • Flexible batch embedding with cache optimization.
  • Scalable & Customizable:

    • Works with synchronous & asynchronous processing.
    • Supports custom splitting rules.

🚀 Installation

Install via pip:

pip install embs

For Poetry users:

[tool.poetry.dependencies]
embs = "^0.1.8"

📖 Quick Start Guide

1️⃣ Searching Documents via DuckDuckGo (Recommended!)

Retrieve relevant web pages, convert them to Markdown, and rank them using embeddings.

🚀 Always use a splitter!
Improves ranking, reduces redundancy, and ensures better retrieval.

import asyncio
from functools import partial
from embs import Embs

# Configure a Markdown-based splitter
split_config = {
    "headers_to_split_on": [("#", "h1"), ("##", "h2"), ("###", "h3")],
    "return_each_line": True,
    "strip_headers": True,
    "split_on_double_newline": True,
}
md_splitter = partial(Embs.markdown_splitter, config=split_config)

client = Embs()

async def run_search():
    results = await client.search_documents_async(
        query="Latest AI research",
        limit=3,
        blocklist=["youtube.com"],  # Exclude unwanted domains
        splitter=md_splitter,  # Enable smart chunking
    )
    for item in results:
        print(f"File: {item['filename']} | Score: {item['similarity']:.4f}")
        print(f"Snippet: {item['markdown'][:80]}...\n")

asyncio.run(run_search())

For synchronous usage:

results = client.search_documents(
    query="Latest AI research",
    limit=3,
    blocklist=["youtube.com"],
    splitter=md_splitter,  # Always use a splitter
    model="snowflake-arctic-embed-l-v2.0",
)
for item in results:
    print(f"File: {item['filename']} | Score: {item['similarity']:.4f}")

2️⃣ Multilingual Document Querying (Local & Online)

Retrieve and rank multilingual documents from local files or URLs.

async def run_query():
    docs = await client.query_documents_async(
        query="Explique la mécanique quantique",  # French query
        files=["/path/to/quantum_theory.pdf"],
        urls=["https://example.com/quantum.html"],
        splitter=md_splitter,  # Chunking for better retrieval
    )
    for d in docs:
        print(f"{d['filename']} => Score: {d['similarity']:.4f}")
        print(f"Snippet: {d['markdown'][:80]}...\n")

asyncio.run(run_query())

For synchronous usage:

docs = client.query_documents(
    query="Explique la mécanique quantique",
    files=["/path/to/quantum_theory.pdf"],
    splitter=md_splitter,
)
for d in docs:
    print(d["filename"], "=> Score:", d["similarity"])

💡 Perfect for multilingual retrieval! Whether you're searching documents in English, French, Spanish, German, or other supported languages, embs ensures optimal ranking and retrieval.

⚡ Caching for Performance

Enable in-memory or disk caching to speed up repeated queries.

cache_conf = {
    "enabled": True,
    "type": "memory",       # or "disk"
    "prefix": "myapp",
    "dir": "cache_folder",  # Required for disk caching
    "max_mem_items": 128,
    "max_ttl_seconds": 86400
}

client = Embs(cache_config=cache_conf)

🔍 Key Features & API Methods

🔹 search_documents_async()

Search for documents via DuckDuckGo, retrieve, and rank them.

await client.search_documents_async(
    query="Recent AI breakthroughs",
    limit=3,
    blocklist=["example.com"],
    splitter=md_splitter
)

🔹 query_documents_async()

Retrieve, split, and rank local/online documents.

await client.query_documents_async(
    query="Climate change effects",
    files=["/path/to/report.pdf"],
    urls=["https://example.com"],
    splitter=md_splitter,
)

🔹 embed_async()

Generate embeddings for texts with multilingual support.

embeddings = await client.embed_async(
    ["Este es un ejemplo de texto.", "Ceci est un exemple de phrase."],
    optimized=True  # Process one at a time for better caching
)

🔹 rank_async()

Rank candidate texts by similarity to a query.

ranked_results = await client.rank_async(
    query="Machine learning",
    candidates=["Deep learning is a subset of ML", "Quantum computing is unrelated"]
)

🔬 Testing

Run pytest and pytest-asyncio for automated testing:

pytest --asyncio-mode=auto

📝 Best Practices: Always Use a Splitter!

✅ How to Use the Built-in Markdown Splitter

from functools import partial

split_config = {
    "headers_to_split_on": [("#", "h1"), ("##", "h2"), ("###", "h3")],
    "return_each_line": True,
    "strip_headers": True,
    "split_on_double_newline": True,
}

md_splitter = partial(Embs.markdown_splitter, config=split_config)

docs = client.query_documents(
    query="Machine Learning Basics",
    files=["/path/to/ml_guide.pdf"],
    splitter=md_splitter
)

📜 License

Licensed under MIT License. See LICENSE for details.

🤝 Contributing

Pull requests, issues, and discussions are welcome!

🚀 With enhanced multilingual support, embs is now even more powerful for global retrieval applications! 🌍

About

embs is a Python toolkit for retrieving documents (via Docsifer), generating embeddings (via Lightweight Embeddings API), and ranking texts with an optional caching system.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages