forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (PaddlePaddle#…
…1470) * ppocr cls preprocessor use manager * hwc2chw cvcuda * ppocr rec preproc use manager * ocr rec preproc cvcuda * fix rec preproc bug * ppocr cls&rec preproc set normalize * fix pybind * address comment
- Loading branch information
1 parent
fe2882a
commit 044ab99
Showing
19 changed files
with
424 additions
and
306 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#ifdef WITH_GPU | ||
#include "fastdeploy/vision/common/processors/normalize.h" | ||
|
||
namespace fastdeploy { | ||
namespace vision { | ||
|
||
__global__ void NormalizeKernel(const uint8_t* src, float* dst, | ||
const float* alpha, const float* beta, | ||
int num_channel, bool swap_rb, int batch_size, | ||
int edge) { | ||
int idx = blockDim.x * blockIdx.x + threadIdx.x; | ||
if (idx >= edge) return; | ||
|
||
int img_size = edge / batch_size; | ||
int n = idx / img_size; // batch index | ||
int p = idx - (n * img_size); // pixel index within the image | ||
|
||
for (int i = 0; i < num_channel; ++i) { | ||
int j = i; | ||
if (swap_rb) { | ||
j = 2 - i; | ||
} | ||
dst[num_channel * idx + j] = | ||
src[num_channel * idx + j] * alpha[i] + beta[i]; | ||
} | ||
} | ||
|
||
bool Normalize::ImplByCuda(FDMat* mat) { | ||
if (mat->layout != Layout::HWC) { | ||
FDERROR << "The input data must be NHWC format!" << std::endl; | ||
return false; | ||
} | ||
|
||
// Prepare input tensor | ||
FDTensor* src = CreateCachedGpuInputTensor(mat); | ||
src->ExpandDim(0); | ||
FDMatBatch mat_batch; | ||
mat_batch.SetTensor(src); | ||
mat_batch.mat_type = ProcLib::CUDA; | ||
mat_batch.input_cache = mat->input_cache; | ||
mat_batch.output_cache = mat->output_cache; | ||
|
||
bool ret = ImplByCuda(&mat_batch); | ||
|
||
FDTensor* dst = mat_batch.Tensor(); | ||
dst->Squeeze(0); | ||
mat->SetTensor(dst); | ||
mat->mat_type = ProcLib::CUDA; | ||
return true; | ||
} | ||
|
||
bool Normalize::ImplByCuda(FDMatBatch* mat_batch) { | ||
if (mat_batch->layout != FDMatBatchLayout::NHWC) { | ||
FDERROR << "The input data must be NHWC format!" << std::endl; | ||
return false; | ||
} | ||
// Prepare input tensor | ||
FDTensor* src = CreateCachedGpuInputTensor(mat_batch); | ||
|
||
// Prepare output tensor | ||
mat_batch->output_cache->Resize(src->Shape(), FDDataType::FP32, | ||
"batch_output_cache", Device::GPU); | ||
|
||
// Copy alpha and beta to GPU | ||
gpu_alpha_.Resize({1, 1, static_cast<int>(alpha_.size())}, FDDataType::FP32, | ||
"alpha", Device::GPU); | ||
cudaMemcpy(gpu_alpha_.Data(), alpha_.data(), gpu_alpha_.Nbytes(), | ||
cudaMemcpyHostToDevice); | ||
|
||
gpu_beta_.Resize({1, 1, static_cast<int>(beta_.size())}, FDDataType::FP32, | ||
"beta", Device::GPU); | ||
cudaMemcpy(gpu_beta_.Data(), beta_.data(), gpu_beta_.Nbytes(), | ||
cudaMemcpyHostToDevice); | ||
|
||
int jobs = | ||
mat_batch->output_cache->Numel() / mat_batch->output_cache->shape[3]; | ||
int threads = 256; | ||
int blocks = ceil(jobs / (float)threads); | ||
NormalizeKernel<<<blocks, threads, 0, mat_batch->Stream()>>>( | ||
reinterpret_cast<uint8_t*>(src->Data()), | ||
reinterpret_cast<float*>(mat_batch->output_cache->Data()), | ||
reinterpret_cast<float*>(gpu_alpha_.Data()), | ||
reinterpret_cast<float*>(gpu_beta_.Data()), | ||
mat_batch->output_cache->shape[3], swap_rb_, | ||
mat_batch->output_cache->shape[0], jobs); | ||
mat_batch->SetTensor(mat_batch->output_cache); | ||
mat_batch->mat_type = ProcLib::CUDA; | ||
return true; | ||
} | ||
#ifdef ENABLE_CVCUDA | ||
bool Normalize::ImplByCvCuda(FDMat* mat) { return ImplByCuda(mat); } | ||
bool Normalize::ImplByCvCuda(FDMatBatch* mat_batch) { | ||
return ImplByCuda(mat_batch); | ||
} | ||
#endif | ||
} // namespace vision | ||
} // namespace fastdeploy | ||
#endif |
Oops, something went wrong.