-
Part I: Introducción
- Basic Variables
- Basic Operations
-
Part II: Machine Learning
- Lineal Regression
- Logistic Regression
- Neural Networks
-
Part III: Deep Learning for Classification
- Convolutional Neural Networks
- CNNs Arquitectures
- Transfer Learning
- CNN using custom data
- Basic RNN (LSTM)
-
Part IV: Deep Learning for Object Detection
- Faster RCNN using Pre-trained Model
-
Part V: Deep Learning for Pose Estimation
- Body Estimation using pre-trained model
Note: Use environment.yml to download libraries in order to run every notebook.