-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
916bf88
commit edcc31c
Showing
2 changed files
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
0 0 0 | ||
0 1 1 | ||
1 0 1 | ||
1 1 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
# the structure of neural network: | ||
# input layer with 2 inputs | ||
# 1 hidden layer with 2 units, tanh() | ||
# output layer with 1 unit, sigmoid() | ||
|
||
import numpy as np | ||
import scipy | ||
from scipy.special import expit | ||
import math | ||
def run(): | ||
X = loadData("XOR.txt") | ||
W = paraIni() | ||
#print(X.shape) | ||
intermRslt = feedforward(X,W) | ||
#print(intermRslt[2]) | ||
Y = X[:, len(X[0])-1:len(X[0])] | ||
#print(Y) | ||
Yhat = intermRslt[2] | ||
#print(Yhat) | ||
#print(errCompute(Y, Yhat)) | ||
B=backpropagate(X, W, intermRslt, 0.5) | ||
#print(B) | ||
|
||
numIter = [100, 1000, 5000, 10000] | ||
alp = [0.01, 0.5] | ||
for i in range(len(numIter)): | ||
for j in range(len(alp)): | ||
R=FFMain("XOR.txt", numIter[i], alp[j]) | ||
np.savetxt('Error(numIter=' + repr(numIter[i]) + ',alp='+ repr(alp[j])+ ')' + '.txt', R[0], fmt="%.8f") | ||
np.savetxt('Output(numIter=' + repr(numIter[i]) + ',alp='+ repr(alp[j])+ ')' + '.txt', R[1], fmt="%.8f") | ||
np.savetxt('NewHidden(numIter=' + repr(numIter[i]) + ',alp='+ repr(alp[j])+ ')' + '.txt', R[2][0], fmt="%.8f") | ||
np.savetxt('NewOutput(numIter=' + repr(numIter[i]) + ',alp='+ repr(alp[j])+ ')' + '.txt', R[2][1], fmt="%.8f") | ||
#R=FFMain("XOR.txt", 10000, 0.5) | ||
#print("R",R[1]) | ||
|
||
def loadData(Filename): | ||
X=[] | ||
count = 0 | ||
|
||
text_file = open(Filename, "r") | ||
lines = text_file.readlines() | ||
|
||
for line in lines: | ||
X.append([]) | ||
words = line.split(' ') | ||
#print(words) | ||
# convert value of first attribute into float | ||
for word in words: | ||
#print(word) | ||
X[count].append(float(word)) | ||
count += 1 | ||
X = np.asarray(X) | ||
n,m = X.shape # for generality | ||
X0 = np.ones((n,1)) | ||
X = np.hstack((X0,X)) | ||
return X | ||
|
||
def paraIni(): | ||
#code for fixed network and initial values | ||
# parameters for hidden layer, 3 by 3 | ||
#wh=np.array([[0.1859,-0.7706,0.6257],[-0.7984,0.5607,0.2109]]) | ||
#wh=np.random.random_sample((2,3)) | ||
wh=np.random.uniform(low = -1.0001, high=1.0001, size=(2,3)) | ||
wh[wh>1.0] = 1.0 | ||
wh[wh<-1.0] = -1.0 | ||
|
||
# parameter for output layer 1 by 3 | ||
#wo=np.array([[0.1328,0.5951,0.3433]]) | ||
#wo=np.random.random_sample((1,3)) | ||
wo=np.random.uniform(low = -1.0001, high=1.0001, size=(1,3)) | ||
wo[wo>1.0] = 1.0 | ||
wo[wo<-1.0] = -1.0 | ||
|
||
return [wh,wo] | ||
|
||
def feedforward(X,paras): | ||
tempX = X[:, 0:len(X[0])-1] #x,y | ||
tempY = X[:, len(X[0])-1:len(X[0])] | ||
oh = np.tanh(np.dot(paras[0], tempX.transpose())) | ||
n,m = oh.shape # for generality | ||
X0 = np.ones((m,1)) | ||
ino = np.vstack((X0.transpose(),oh)) | ||
oo = expit(np.dot(paras[1],ino)) | ||
return [oh,ino,oo] | ||
|
||
def errCompute(Y,Yhat): | ||
#this will not have the output from the original array | ||
sum = 0 | ||
Yo = Yhat[0] | ||
|
||
for k in range(len(Y)): | ||
sum += pow((Y[k] - Yo[k]),2) | ||
#sum all values & find error value | ||
J = sum / (2 * len(Yo)) | ||
|
||
return J | ||
|
||
def backpropagate(X,paras,intermRslt,alpha): | ||
#Initializing | ||
Y = X[:, len(X[0])-1:len(X[0])] | ||
tempX = X[:, 0:len(X[0])-1] | ||
oo = intermRslt[2][0] | ||
ino = intermRslt[1] | ||
oh = intermRslt[0] | ||
wh = paras[0] | ||
wo = paras[1] | ||
|
||
delta = np.multiply(np.multiply((Y.transpose() - oo), oo), (1.0-oo)) | ||
wo = wo + (alpha * np.dot(delta,ino.transpose()))/4.0 | ||
wop = wo[:, 1:len(wo[0])] | ||
dot =np.dot(wop.transpose(), delta) | ||
|
||
deltah = np.multiply(dot, (1.0-oh*oh)) | ||
wh = wh + alpha * np.dot(deltah, tempX) / 4.0 | ||
|
||
return [wh,wo] | ||
|
||
def FFMain(filename,numIteration, alpha): | ||
#data load | ||
X = loadData(filename) | ||
# | ||
W = paraIni() | ||
|
||
#number of features | ||
n = X.shape[1] | ||
|
||
#error | ||
errHistory = np.zeros((numIteration,1)) | ||
|
||
for i in range(numIteration): | ||
#feedforward | ||
intermRslt=feedforward(X,W) | ||
#Cost function | ||
errHistory[i,0]=errCompute(X[:,n-1:n],intermRslt[2]) | ||
#backpropagate | ||
W=backpropagate(X,W,intermRslt,alpha) | ||
|
||
Yhat=np.around(intermRslt[2]) | ||
return [errHistory,intermRslt[2],W] |