Skip to content

Commit

Permalink
feat: the product of L^p functions is L^p' (#21033)
Browse files Browse the repository at this point in the history
Co-authored-by: Kexing Ying <[email protected]>
  • Loading branch information
YaelDillies and kex-y committed Jan 25, 2025
1 parent b8b62d3 commit f7d835a
Showing 1 changed file with 22 additions and 0 deletions.
22 changes: 22 additions & 0 deletions Mathlib/MeasureTheory/Function/LpSeminorm/CompareExp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -411,4 +411,26 @@ theorem Memℒp.mul_of_top_left' (hf : Memℒp f ∞ μ) (hφ : Memℒp φ p μ)

end Mul

section Prod
variable {ι α 𝕜 : Type*} {_ : MeasurableSpace α} [NormedCommRing 𝕜] {μ : Measure α} {f : ι → α → 𝕜}
{p : ι → ℝ≥0∞} {s : Finset ι}

open Finset in
/-- See `Memℒp.prod'` for the applied version. -/
protected lemma Memℒp.prod (hf : ∀ i ∈ s, Memℒp (f i) (p i) μ) :
Memℒp (∏ i ∈ s, f i) (∑ i ∈ s, (p i)⁻¹)⁻¹ μ := by
induction s using cons_induction with
| empty =>
by_cases hμ : μ = 0 <;>
simp [Memℒp, eLpNormEssSup_const, hμ, aestronglyMeasurable_const, Pi.one_def]
| cons i s hi ih =>
rw [prod_cons]
exact (ih <| forall_of_forall_cons hf).mul (hf i <| mem_cons_self ..) (by simp)

/-- See `Memℒp.prod` for the unapplied version. -/
protected lemma Memℒp.prod' (hf : ∀ i ∈ s, Memℒp (f i) (p i) μ) :
Memℒp (fun ω ↦ ∏ i ∈ s, f i ω) (∑ i ∈ s, (p i)⁻¹)⁻¹ μ := by
simpa [Finset.prod_fn] using Memℒp.prod hf

end Prod
end MeasureTheory

0 comments on commit f7d835a

Please sign in to comment.