Skip to content

Commit

Permalink
feat: port Probability.Process.Filtration (#5195)
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel committed Jun 17, 2023
1 parent 9c71e3c commit 07e79d9
Show file tree
Hide file tree
Showing 2 changed files with 360 additions and 0 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2443,6 +2443,7 @@ import Mathlib.Probability.ProbabilityMassFunction.Basic
import Mathlib.Probability.ProbabilityMassFunction.Constructions
import Mathlib.Probability.ProbabilityMassFunction.Monad
import Mathlib.Probability.ProbabilityMassFunction.Uniform
import Mathlib.Probability.Process.Filtration
import Mathlib.RepresentationTheory.Action
import Mathlib.RepresentationTheory.Basic
import Mathlib.RepresentationTheory.Maschke
Expand Down
359 changes: 359 additions & 0 deletions Mathlib/Probability/Process/Filtration.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
/-
Copyright (c) 2021 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Rémy Degenne
! This file was ported from Lean 3 source module probability.process.filtration
! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.MeasureTheory.Function.ConditionalExpectation.Real

/-!
# Filtrations
This file defines filtrations of a measurable space and σ-finite filtrations.
## Main definitions
* `MeasureTheory.Filtration`: a filtration on a measurable space. That is, a monotone sequence of
sub-σ-algebras.
* `MeasureTheory.SigmaFiniteFiltration`: a filtration `f` is σ-finite with respect to a measure
`μ` if for all `i`, `μ.trim (f.le i)` is σ-finite.
* `MeasureTheory.Filtration.natural`: the smallest filtration that makes a process adapted. That
notion `adapted` is not defined yet in this file. See `MeasureTheory.adapted`.
## Main results
* `MeasureTheory.Filtration.instCompleteLattice`: filtrations are a complete lattice.
## Tags
filtration, stochastic process
-/


open Filter Order TopologicalSpace

open scoped Classical MeasureTheory NNReal ENNReal Topology BigOperators

namespace MeasureTheory

/-- A `Filtration` on a measurable space `Ω` with σ-algebra `m` is a monotone
sequence of sub-σ-algebras of `m`. -/
structure Filtration {Ω : Type _} (ι : Type _) [Preorder ι] (m : MeasurableSpace Ω) where
seq : ι → MeasurableSpace Ω
mono' : Monotone seq
le' : ∀ i : ι, seq i ≤ m
#align measure_theory.filtration MeasureTheory.Filtration

variable {Ω β ι : Type _} {m : MeasurableSpace Ω}

instance [Preorder ι] : CoeFun (Filtration ι m) fun _ => ι → MeasurableSpace Ω :=
fun f => f.seq⟩

namespace Filtration

variable [Preorder ι]

protected theorem mono {i j : ι} (f : Filtration ι m) (hij : i ≤ j) : f i ≤ f j :=
f.mono' hij
#align measure_theory.filtration.mono MeasureTheory.Filtration.mono

protected theorem le (f : Filtration ι m) (i : ι) : f i ≤ m :=
f.le' i
#align measure_theory.filtration.le MeasureTheory.Filtration.le

@[ext]
protected theorem ext {f g : Filtration ι m} (h : (f : ι → MeasurableSpace Ω) = g) : f = g := by
cases f; cases g; simp only; congr
#align measure_theory.filtration.ext MeasureTheory.Filtration.ext

variable (ι)

/-- The constant filtration which is equal to `m` for all `i : ι`. -/
def const (m' : MeasurableSpace Ω) (hm' : m' ≤ m) : Filtration ι m :=
fun _ => m', monotone_const, fun _ => hm'⟩
#align measure_theory.filtration.const MeasureTheory.Filtration.const

variable {ι}

@[simp]
theorem const_apply {m' : MeasurableSpace Ω} {hm' : m' ≤ m} (i : ι) : const ι m' hm' i = m' :=
rfl
#align measure_theory.filtration.const_apply MeasureTheory.Filtration.const_apply

instance : Inhabited (Filtration ι m) :=
⟨const ι m le_rfl⟩

instance : LE (Filtration ι m) :=
fun f g => ∀ i, f i ≤ g i⟩

instance : Bot (Filtration ι m) :=
⟨const ι ⊥ bot_le⟩

instance : Top (Filtration ι m) :=
⟨const ι m le_rfl⟩

instance : Sup (Filtration ι m) :=
fun f g =>
{ seq := fun i => f i ⊔ g i
mono' := fun _ _ hij =>
sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right)
le' := fun i => sup_le (f.le i) (g.le i) }⟩

-- @[norm_cast] -- Porting note: no longer involves casting (new-style structures)
theorem coeFn_sup {f g : Filtration ι m} : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
rfl
#align measure_theory.filtration.coe_fn_sup MeasureTheory.Filtration.coeFn_sup

instance : Inf (Filtration ι m) :=
fun f g =>
{ seq := fun i => f i ⊓ g i
mono' := fun _ _ hij =>
le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij))
le' := fun i => inf_le_left.trans (f.le i) }⟩

-- @[norm_cast] -- Porting note: no longer involves casting (new-style structures)
theorem coeFn_inf {f g : Filtration ι m} : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
rfl
#align measure_theory.filtration.coe_fn_inf MeasureTheory.Filtration.coeFn_inf

instance : SupSet (Filtration ι m) :=
fun s =>
{ seq := fun i => sSup ((fun f : Filtration ι m => f i) '' s)
mono' := fun i j hij => by
refine' sSup_le fun m' hm' => _
rw [Set.mem_image] at hm'
obtain ⟨f, hf_mem, hfm'⟩ := hm'
rw [← hfm']
refine' (f.mono hij).trans _
have hfj_mem : f j ∈ (fun g : Filtration ι m => g j) '' s := ⟨f, hf_mem, rfl⟩
exact le_sSup hfj_mem
le' := fun i => by
refine' sSup_le fun m' hm' => _
rw [Set.mem_image] at hm'
obtain ⟨f, _, hfm'⟩ := hm'
rw [← hfm']
exact f.le i }⟩

theorem sSup_def (s : Set (Filtration ι m)) (i : ι) :
sSup s i = sSup ((fun f : Filtration ι m => f i) '' s) :=
rfl
#align measure_theory.filtration.Sup_def MeasureTheory.Filtration.sSup_def

noncomputable instance : InfSet (Filtration ι m) :=
fun s =>
{ seq := fun i => if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m
mono' := fun i j hij => by
by_cases h_nonempty : Set.Nonempty s
swap; · simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂]
refine' fun f hf_mem => le_trans _ (f.mono hij)
have hfi_mem : f i ∈ (fun g : Filtration ι m => g i) '' s := ⟨f, hf_mem, rfl⟩
exact sInf_le hfi_mem
le' := fun i => by
by_cases h_nonempty : Set.Nonempty s
swap; · simp only [h_nonempty, if_false, le_refl]
simp only [h_nonempty, if_true]
obtain ⟨f, hf_mem⟩ := h_nonempty
exact le_trans (sInf_le ⟨f, hf_mem, rfl⟩) (f.le i) }⟩

theorem sInf_def (s : Set (Filtration ι m)) (i : ι) :
sInf s i = if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m :=
rfl
#align measure_theory.filtration.Inf_def MeasureTheory.Filtration.sInf_def

noncomputable instance instCompleteLattice : CompleteLattice (Filtration ι m) where
le := (· ≤ ·)
le_refl f i := le_rfl
le_trans f g h h_fg h_gh i := (h_fg i).trans (h_gh i)
le_antisymm f g h_fg h_gf := Filtration.ext <| funext fun i => (h_fg i).antisymm (h_gf i)
sup := (· ⊔ ·)
le_sup_left f g i := le_sup_left
le_sup_right f g i := le_sup_right
sup_le f g h h_fh h_gh i := sup_le (h_fh i) (h_gh _)
inf := (· ⊓ ·)
inf_le_left f g i := inf_le_left
inf_le_right f g i := inf_le_right
le_inf f g h h_fg h_fh i := le_inf (h_fg i) (h_fh i)
sSup := sSup
le_sSup s f hf_mem i := le_sSup ⟨f, hf_mem, rfl⟩
sSup_le s f h_forall i :=
sSup_le fun m' hm' => by
obtain ⟨g, hg_mem, hfm'⟩ := hm'
rw [← hfm']
exact h_forall g hg_mem i
sInf := sInf
sInf_le s f hf_mem i := by
have hs : s.Nonempty := ⟨f, hf_mem⟩
simp only [sInf_def, hs, if_true]
exact sInf_le ⟨f, hf_mem, rfl⟩
le_sInf s f h_forall i := by
by_cases hs : s.Nonempty
swap; · simp only [sInf_def, hs, if_false]; exact f.le i
simp only [sInf_def, hs, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂]
exact fun g hg_mem => h_forall g hg_mem i
top := ⊤
bot := ⊥
le_top f i := f.le' i
bot_le f i := bot_le

end Filtration

theorem measurableSet_of_filtration [Preorder ι] {f : Filtration ι m} {s : Set Ω} {i : ι}
(hs : MeasurableSet[f i] s) : MeasurableSet[m] s :=
f.le i s hs
#align measure_theory.measurable_set_of_filtration MeasureTheory.measurableSet_of_filtration

/-- A measure is σ-finite with respect to filtration if it is σ-finite with respect
to all the sub-σ-algebra of the filtration. -/
class SigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) : Prop where
SigmaFinite : ∀ i : ι, SigmaFinite (μ.trim (f.le i))
#align measure_theory.sigma_finite_filtration MeasureTheory.SigmaFiniteFiltration

instance sigmaFinite_of_sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m)
[hf : SigmaFiniteFiltration μ f] (i : ι) : SigmaFinite (μ.trim (f.le i)) := by
apply hf.SigmaFinite
#align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration

-- can't exact here
instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
(f : Filtration ι m) [IsFiniteMeasure μ] : SigmaFiniteFiltration μ f :=
fun n => by infer_instance⟩
#align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration

/-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
filtration is uniformly integrable. -/
theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Measure Ω}
[IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
UniformIntegrable (fun i => μ[g|f i]) 1 μ :=
hg.uniformIntegrable_condexp f.le
#align measure_theory.integrable.uniform_integrable_condexp_filtration MeasureTheory.Integrable.uniformIntegrable_condexp_filtration

section OfSet

variable [Preorder ι]

/-- Given a sequence of measurable sets `(sₙ)`, `filtrationOfSet` is the smallest filtration
such that `sₙ` is measurable with respect to the `n`-th sub-σ-algebra in `filtrationOfSet`. -/
def filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet (s i)) : Filtration ι m where
seq i := MeasurableSpace.generateFrom {t | ∃ j ≤ i, s j = t}
mono' _ _ hnm := MeasurableSpace.generateFrom_mono fun _ ⟨k, hk₁, hk₂⟩ => ⟨k, hk₁.trans hnm, hk₂⟩
le' _ := MeasurableSpace.generateFrom_le fun _ ⟨k, _, hk₂⟩ => hk₂ ▸ hsm k
#align measure_theory.filtration_of_set MeasureTheory.filtrationOfSet

theorem measurableSet_filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet[m] (s i)) (i : ι)
{j : ι} (hj : j ≤ i) : MeasurableSet[filtrationOfSet hsm i] (s j) :=
MeasurableSpace.measurableSet_generateFrom ⟨j, hj, rfl⟩
#align measure_theory.measurable_set_filtration_of_set MeasureTheory.measurableSet_filtrationOfSet

theorem measurableSet_filtration_of_set' {s : ι → Set Ω} (hsm : ∀ n, MeasurableSet[m] (s n))
(i : ι) : MeasurableSet[filtrationOfSet hsm i] (s i) :=
measurableSet_filtrationOfSet hsm i le_rfl
#align measure_theory.measurable_set_filtration_of_set' MeasureTheory.measurableSet_filtration_of_set'

end OfSet

namespace Filtration

variable [TopologicalSpace β] [MetrizableSpace β] [mβ : MeasurableSpace β] [BorelSpace β]
[Preorder ι]

/-- Given a sequence of functions, the natural filtration is the smallest sequence
of σ-algebras such that that sequence of functions is measurable with respect to
the filtration. -/
def natural (u : ι → Ω → β) (hum : ∀ i, StronglyMeasurable (u i)) : Filtration ι m where
seq i := ⨆ j ≤ i, MeasurableSpace.comap (u j) mβ
mono' i j hij := biSup_mono fun k => ge_trans hij
le' i := by
refine' iSup₂_le _
rintro j _ s ⟨t, ht, rfl⟩
exact (hum j).measurable ht
#align measure_theory.filtration.natural MeasureTheory.Filtration.natural

section

open MeasurableSpace

theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι → Set Ω}
(hsm : ∀ i, MeasurableSet[m] (s i)) :
filtrationOfSet hsm = natural (fun i => (s i).indicator (fun _ => 1 : Ω → β)) fun i =>
stronglyMeasurable_one.indicator (hsm i) := by
simp [natural, filtrationOfSet, measurableSpace_iSup_eq]
ext1 i
refine' le_antisymm (generateFrom_le _) (generateFrom_le _)
· rintro _ ⟨j, hij, rfl⟩
refine' measurableSet_generateFrom ⟨j, measurableSet_generateFrom ⟨hij, _⟩⟩
rw [comap_eq_generateFrom]
refine' measurableSet_generateFrom ⟨{1}, measurableSet_singleton 1, _⟩
ext x
simp [Set.indicator_const_preimage_eq_union]
· rintro t ⟨n, ht⟩
suffices MeasurableSpace.generateFrom {t | ∃ _ : n ≤ i,
MeasurableSet[MeasurableSpace.comap ((s n).indicator (fun _ => 1 : Ω → β)) mβ] t} ≤
MeasurableSpace.generateFrom {t | ∃ (j : ι) (_ : j ≤ i), s j = t} by
-- Porting note: was `exact this _ ht`
convert this _ _ <;> simp_all only [exists_prop]
refine' generateFrom_le _
rintro t ⟨hn, u, _, hu'⟩
obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
pick_goal 4; rw [Set.mem_singleton_iff] at heq
all_goals rw [heq] at hu' ; rw [← hu']
exacts [measurableSet_empty _, MeasurableSet.univ, measurableSet_generateFrom ⟨n, hn, rfl⟩,
MeasurableSet.compl (measurableSet_generateFrom ⟨n, hn, rfl⟩)]
#align measure_theory.filtration.filtration_of_set_eq_natural MeasureTheory.Filtration.filtrationOfSet_eq_natural

end

section Limit

variable {E : Type _} [Zero E] [TopologicalSpace E] {ℱ : Filtration ι m} {f : ι → Ω → E}
{μ : Measure Ω}

/-- Given a process `f` and a filtration `ℱ`, if `f` converges to some `g` almost everywhere and
`g` is `⨆ n, ℱ n`-measurable, then `limitProcess f ℱ μ` chooses said `g`, else it returns 0.
This definition is used to phrase the a.e. martingale convergence theorem
`Submartingale.ae_tendsto_limitProcess` where an L¹-bounded submartingale `f` adapted to `ℱ`
converges to `limitProcess f ℱ μ` `μ`-almost everywhere. -/
noncomputable def limitProcess (f : ι → Ω → E) (ℱ : Filtration ι m)
(μ : Measure Ω) :=
if h : ∃ g : Ω → E,
StronglyMeasurable[⨆ n, ℱ n] g ∧ ∀ᵐ ω ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) then
Classical.choose h else 0
#align measure_theory.filtration.limit_process MeasureTheory.Filtration.limitProcess

theorem stronglyMeasurable_limitProcess : StronglyMeasurable[⨆ n, ℱ n] (limitProcess f ℱ μ) := by
rw [limitProcess]
split_ifs with h
exacts [(Classical.choose_spec h).1, stronglyMeasurable_zero]
#align measure_theory.filtration.strongly_measurable_limit_process MeasureTheory.Filtration.stronglyMeasurable_limitProcess

theorem stronglyMeasurable_limit_process' : StronglyMeasurable[m] (limitProcess f ℱ μ) :=
stronglyMeasurable_limitProcess.mono (sSup_le fun _ ⟨_, hn⟩ => hn ▸ ℱ.le _)
#align measure_theory.filtration.strongly_measurable_limit_process' MeasureTheory.Filtration.stronglyMeasurable_limit_process'

theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
{ℱ : Filtration ℕ m} {f : ℕ → Ω → F} (hfm : ∀ n, AEStronglyMeasurable (f n) μ)
(hbdd : ∀ n, snorm (f n) p μ ≤ R) : Memℒp (limitProcess f ℱ μ) p μ := by
rw [limitProcess]
split_ifs with h
· refine' ⟨StronglyMeasurable.aestronglyMeasurable
((Classical.choose_spec h).1.mono (sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)),
lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (Classical.choose_spec h).2)
(lt_of_le_of_lt _ (ENNReal.coe_lt_top : ↑R < ∞))⟩
simp_rw [liminf_eq, eventually_atTop]
exact sSup_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
· exact zero_memℒp
#align measure_theory.filtration.mem_ℒp_limit_process_of_snorm_bdd MeasureTheory.Filtration.memℒp_limitProcess_of_snorm_bdd

end Limit

end Filtration

end MeasureTheory

0 comments on commit 07e79d9

Please sign in to comment.