Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft: Add nuScenes (lidar only) support #6

Merged
merged 4 commits into from
Apr 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ Currently supported datasets:

- Argoverse 2 (Human Labeled and [NSFP Pseudolabeled](https://github.com/kylevedder/BucketedSceneFlowEval/blob/master/docs/GETTING_STARTED.md#argoverse-2-nsfp-pseudolabels-new))
- Waymo Open (LiDAR only)
- NuScenes (LiDAR only, beta)


If you use this repository as part of a publication, please cite:
Expand Down
7 changes: 7 additions & 0 deletions bucketed_scene_flow_eval/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,18 @@
WaymoOpenCausalSceneFlow,
WaymoOpenNonCausalSceneFlow,
)

from bucketed_scene_flow_eval.datasets.nuscenes import (
NuScenesCausalSceneFlow,
NuScenesNonCausalSceneFlow,
)
from bucketed_scene_flow_eval.interfaces import AbstractDataset

importable_classes = [
Argoverse2CausalSceneFlow,
Argoverse2NonCausalSceneFlow,
NuScenesCausalSceneFlow,
NuScenesNonCausalSceneFlow,
WaymoOpenCausalSceneFlow,
WaymoOpenNonCausalSceneFlow,
]
Expand Down
2 changes: 0 additions & 2 deletions bucketed_scene_flow_eval/datasets/argoverse2/__init__.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
from .argoverse_raw_data import (
DEFAULT_POINT_CLOUD_RANGE,
ArgoverseRawSequence,
ArgoverseRawSequenceLoader,
PointCloudRange,
)
from .argoverse_scene_flow import (
ArgoverseNoFlowSequence,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Optional
from typing import Optional

import cv2
import numpy as np
Expand Down Expand Up @@ -196,7 +196,7 @@ def __init__(
expected_camera_shape=(1550, 2048, 3),
):
self.log_id = log_id
self.POINT_CLOUD_RANGE = point_cloud_range
self.point_cloud_range = point_cloud_range

self.dataset_dir = Path(dataset_dir)
assert self.dataset_dir.is_dir(), f"dataset_dir {dataset_dir} does not exist"
Expand Down Expand Up @@ -418,14 +418,14 @@ def is_ground_points(self, global_point_cloud: PointCloud) -> np.ndarray:
return is_ground_boolean_arr

def is_in_range(self, global_point_cloud: PointCloud) -> MaskArray:
if self.POINT_CLOUD_RANGE is None:
if self.point_cloud_range is None:
return np.ones(len(global_point_cloud), dtype=bool)
xmin = self.POINT_CLOUD_RANGE[0]
ymin = self.POINT_CLOUD_RANGE[1]
zmin = self.POINT_CLOUD_RANGE[2]
xmax = self.POINT_CLOUD_RANGE[3]
ymax = self.POINT_CLOUD_RANGE[4]
zmax = self.POINT_CLOUD_RANGE[5]
xmin = self.point_cloud_range[0]
ymin = self.point_cloud_range[1]
zmin = self.point_cloud_range[2]
xmax = self.point_cloud_range[3]
ymax = self.point_cloud_range[4]
zmax = self.point_cloud_range[5]
return global_point_cloud.within_region_mask(xmin, xmax, ymin, ymax, zmin, zmax)

def __repr__(self) -> str:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import copy
import dataclasses
from pathlib import Path
from typing import Optional, Union

Expand All @@ -9,7 +7,6 @@
EgoLidarFlow,
MaskArray,
PointCloud,
PointCloudFrame,
SemanticClassId,
SemanticClassIdArray,
SupervisedPointCloudFrame,
Expand All @@ -24,7 +21,7 @@
)
from bucketed_scene_flow_eval.utils.loaders import load_feather

from . import DEFAULT_POINT_CLOUD_RANGE, ArgoverseRawSequence, PointCloudRange
from bucketed_scene_flow_eval.datasets.argoverse2.argoverse_raw_data import DEFAULT_POINT_CLOUD_RANGE, ArgoverseRawSequence, PointCloudRange

CATEGORY_MAP = {
-1: "BACKGROUND",
Expand Down
3 changes: 1 addition & 2 deletions bucketed_scene_flow_eval/datasets/argoverse2/dataset.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import copy
from pathlib import Path
from typing import Any, Optional, Union
from typing import Optional, Union

from bucketed_scene_flow_eval.datastructures import *
from bucketed_scene_flow_eval.eval import (
Expand All @@ -9,7 +9,6 @@
ThreeWayEPEEvaluator,
)
from bucketed_scene_flow_eval.interfaces import (
AbstractAVLidarSequence,
CausalSeqLoaderDataset,
EvalType,
NonCausalSeqLoaderDataset,
Expand Down
23 changes: 22 additions & 1 deletion bucketed_scene_flow_eval/datasets/nuscenes/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,22 @@
from .nuscenes_loader import NuScenesLoader, NuScenesSequence
from .nuscenes_raw_data import (
NuScenesRawSequence,
NuScenesRawSequenceLoader,
)
from .nuscenes_scene_flow import (
NuScenesNoFlowSequence,
NuScenesNoFlowSequenceLoader,
NuScenesSceneFlowSequence,
NuScenesSceneFlowSequenceLoader
)
from .dataset import NuScenesCausalSceneFlow, NuScenesNonCausalSceneFlow

__all__ = [
"NuScenesCausalSceneFlow",
"NuScenesNonCausalSceneFlow",
"NuScenesNoFlowSequence",
"NuScenesNoFlowSequenceLoader",
"NuScenesRawSequence",
"NuScenesRawSequenceLoader",
"NuScenesSceneFlowSequence",
"NuScenesSceneFlowSequenceLoader",
]
134 changes: 134 additions & 0 deletions bucketed_scene_flow_eval/datasets/nuscenes/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
import copy
from pathlib import Path
from typing import Optional, Union

from bucketed_scene_flow_eval.datastructures import *
from bucketed_scene_flow_eval.eval import (
BucketedEPEEvaluator,
Evaluator,
ThreeWayEPEEvaluator,
)
from bucketed_scene_flow_eval.interfaces import (
CausalSeqLoaderDataset,
EvalType,
NonCausalSeqLoaderDataset,
)

from bucketed_scene_flow_eval.datasets.argoverse2.argoverse_raw_data import DEFAULT_POINT_CLOUD_RANGE, PointCloudRange
from .nuscenes_scene_flow import (
CATEGORY_MAP,
NuScenesNoFlowSequenceLoader,
NuScenesSceneFlowSequenceLoader,
)
from .nuscenes_metacategories import BUCKETED_METACATAGORIES, THREEWAY_EPE_METACATAGORIES


def _make_evaluator(eval_type: EvalType, eval_args: dict) -> Evaluator:
eval_args_copy = copy.deepcopy(eval_args)
# Builds the evaluator object for this dataset.
if eval_type == EvalType.BUCKETED_EPE:
if "meta_class_lookup" not in eval_args_copy:
eval_args_copy["meta_class_lookup"] = BUCKETED_METACATAGORIES
if "class_id_to_name" not in eval_args_copy:
eval_args_copy["class_id_to_name"] = CATEGORY_MAP
return BucketedEPEEvaluator(**eval_args_copy)
elif eval_type == EvalType.THREEWAY_EPE:
if "meta_class_lookup" not in eval_args_copy:
eval_args_copy["meta_class_lookup"] = THREEWAY_EPE_METACATAGORIES
if "class_id_to_name" not in eval_args_copy:
eval_args_copy["class_id_to_name"] = CATEGORY_MAP
return ThreeWayEPEEvaluator(**eval_args_copy)
else:
raise ValueError(f"Unknown eval type {eval_type}")


class NuScenesCausalSceneFlow(CausalSeqLoaderDataset):
def __init__(
self,
root_dir: Union[Path, list[Path]],
nuscenes_version: str,
subsequence_length: int = 2,
with_ground: bool = True,
with_rgb: bool = False,
cache_root: Path = Path("/tmp/"),
use_gt_flow: bool = True,
flow_data_path: Optional[Union[Path, list[Path]]] = None,
eval_type: str = "bucketed_epe",
eval_args=dict(),
expected_camera_shape: tuple[int, int, int] = (1550, 2048, 3),
point_cloud_range: Optional[PointCloudRange] = DEFAULT_POINT_CLOUD_RANGE,
use_cache=True,
load_flow: bool = True,
) -> None:
if load_flow:
self.sequence_loader = NuScenesSceneFlowSequenceLoader(
raw_data_path=root_dir,
nuscenes_version=nuscenes_version,
with_rgb=with_rgb,
use_gt_flow=use_gt_flow,
flow_data_path=flow_data_path,
expected_camera_shape=expected_camera_shape,
point_cloud_range=point_cloud_range,
)
else:
self.sequence_loader = NuScenesNoFlowSequenceLoader(
raw_data_path=root_dir,
nuscenes_version=nuscenes_version,
with_rgb=with_rgb,
expected_camera_shape=expected_camera_shape,
point_cloud_range=point_cloud_range,
)
super().__init__(
sequence_loader=self.sequence_loader,
subsequence_length=subsequence_length,
with_ground=with_ground,
idx_lookup_cache_root=cache_root,
eval_type=eval_type,
eval_args=eval_args,
use_cache=use_cache,
)

def evaluator(self) -> Evaluator:
return _make_evaluator(self.eval_type, self.eval_args)


class NuScenesNonCausalSceneFlow(NonCausalSeqLoaderDataset):
def __init__(
self,
root_dir: Union[Path, list[Path]],
subsequence_length: int = 2,
with_ground: bool = True,
with_rgb: bool = False,
cache_root: Path = Path("/tmp/"),
use_gt_flow: bool = True,
flow_data_path: Optional[Union[Path, list[Path]]] = None,
eval_type: str = "bucketed_epe",
eval_args=dict(),
expected_camera_shape: tuple[int, int, int] = (1550, 2048, 3),
use_cache=True,
load_flow: bool = True,
) -> None:
if load_flow:
self.sequence_loader = NuScenesSceneFlowSequenceLoader(
root_dir,
with_rgb=with_rgb,
use_gt_flow=use_gt_flow,
flow_data_path=flow_data_path,
expected_camera_shape=expected_camera_shape,
)
else:
self.sequence_loader = NuScenesNoFlowSequenceLoader(
root_dir, with_rgb=with_rgb, expected_camera_shape=expected_camera_shape
)
super().__init__(
sequence_loader=self.sequence_loader,
subsequence_length=subsequence_length,
with_ground=with_ground,
idx_lookup_cache_root=cache_root,
eval_type=eval_type,
eval_args=eval_args,
use_cache=use_cache,
)

def evaluator(self) -> Evaluator:
return _make_evaluator(self.eval_type, self.eval_args)
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
BACKGROUND_CATEGORIES = ["background"]

# These catagories are ignored because of labeling oddities
STATIC_OBJECTS = [
"movable_object.barrier",
"movable_object.debris",
"movable_object.pushable_pullable",
"movable_object.trafficcone",
"static_object.bicycle_rack",
]

PEDESTRIAN_CATEGORIES = [
"animal",
"human.pedestrian.adult",
"human.pedestrian.child",
"human.pedestrian.construction_worker",
"human.pedestrian.personal_mobility",
"human.pedestrian.police_officer",
"human.pedestrian.stroller",
"human.pedestrian.wheelchair",
]

WHEELED_VRU = ["vehicle.bicycle", "vehicle.motorcycle"]

CAR = ["vehicle.car"]

OTHER_VEHICLES = [
"vehicle.bus.bendy",
"vehicle.bus.rigid",
"vehicle.construction",
"vehicle.emergency.ambulance",
"vehicle.emergency.police",
"vehicle.trailer",
"vehicle.truck",
]

BUCKETED_METACATAGORIES = {
"BACKGROUND": BACKGROUND_CATEGORIES,
"CAR": CAR,
"PEDESTRIAN": PEDESTRIAN_CATEGORIES,
"WHEELED_VRU": WHEELED_VRU,
"OTHER_VEHICLES": OTHER_VEHICLES,
}

THREEWAY_EPE_METACATAGORIES = {
"BACKGROUND": BACKGROUND_CATEGORIES,
"FOREGROUND": PEDESTRIAN_CATEGORIES + WHEELED_VRU + CAR + OTHER_VEHICLES,
}
Loading