Skip to content

A toolbox of motion planning primitives

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT
Notifications You must be signed in to change notification settings

kylc/planning-kit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

planning-kit

MIT Apache CI DOI

planning-kit is an experimental toolbox implementing sampling-based motion planning for high-dimensional systems. The toolbox is exposed in the form of a Rust library with Python bindings.

Setup

  1. Download a recent .whl from GitHub Releases
  2. Run pip install planning_kit_py<...>.whl (replace <...> with the actual filename)
  3. Test it: python -c 'import planning_kit'

Usage

Plan around a sphere obstacle in $\mathbb{R}^3$ using the RRT-Connect planner:

#!/usr/bin/env python3
from math import sqrt
import numpy as np
import rerun as rr
import planning_kit as pkit
from planning_kit import StateSpace, Constraint
# We can construct a Euclidean space, from which samples will be drawn. Because
# this space is defined in the native Rust code, sampling is computationally
# efficient.
#
# We define lower and upper boundaries of the space in R^3.
euclidean = StateSpace.euclidean(-np.ones(3), np.ones(3))
R = 0.95
# A sample is valid if it lies outside a sphere of radius 0.95.
def is_valid(s):
return sqrt(s[0] ** 2 + s[1] ** 2 + s[2] ** 3) > R
# Now we can use a variety of the built-in sampling-based motion planning
# algorithms.
start = -np.ones(3)
goal = np.ones(3)
tree = pkit.rrt_connect(
euclidean, # the search space
is_valid, # is a particular sample valid?
start=start, # the start state
goal=goal, # the goal state
discretization=0.01, # motion validation resolution
# planner-specific parameters
steering_dist=0.1,
n=10000,
)
# Log everything to Rerun!
rr.init("pk.01_intro", spawn=True)
rr.log_view_coordinates("space", xyz="FLU", timeless=True)
rr.log_points("space/rrt_tree", positions=[p for p in tree.points()])
rr.log_line_strip(
"space/shortest_path",
positions=tree.shortest_path(euclidean, start, goal).points(),
)
# Sample the surface of the sphere so we can visualize the keep-out region.
xs = np.random.uniform(low=-1.0, high=1.0, size=(1000, 3))
xs = R * xs / np.linalg.norm(xs, axis=1)[:, None]
rr.log_points("space/sphere", positions=xs)

Details

State Space

A state space (or configuration space) is defined by all possible configurations of the system. Arbitrary state space definitions are possible for use with the library.

For example, to define a Euclidean space (which has equivalent behavior to the built-in StateSpace.euclidean):

#!/usr/bin/env python3
import numpy as np
import rerun as rr
from planning_kit import StateSpace
class MyEuclideanSpace:
def __init__(self, dim):
self.dim = dim
def sample_uniform(self):
return np.random.uniform(0.0, 1.0, self.dim)
def sample_uniform_near(self, near, dist):
return near + np.random.uniform(-dist, dist, self.dim)
def distance(self, a, b):
return np.linalg.norm(np.subtract(a, b))
def interpolate(self, a, b, alpha):
return (1.0 - alpha) * np.asarray(a) + alpha * np.asarray(b)
# Once we wrap our custom implementation in a StateSpace object, we can use it
# as any other.
space = StateSpace.custom(MyEuclideanSpace(dim=3))
# Log everything to Rerun!
rr.init("pk.02_custom_space", spawn=True)
rr.log_view_coordinates("space", xyz="FLU", timeless=True)
rr.log_points("space", positions=[space.sample_uniform() for _ in range(0, 1000)])

Constraints

Planning subject to manifold constraints is implemented via the unifying framework IMACS (implicit manifold configuration space) presented in [KiMK19]. Projection is used to adhere samples from an ambient space to the constrained manifold while preserving the planner properties of probabilistic completeness and asymptotic optimality.

In order to converge on an adhering sample, Newton's method is used to approximate the roots of the constraints. Constraint Jacobians (required for Newton's method) are automatically computed via central finite difference or complex-step differentiation, or are provided analytically.

For example, we can define a constraint which confines the state space to the surface of a unit sphere. With this constraint, we can define a state space which is automatically projected into the manifold. This state space can be used like any other, e.g. for use in motion planning algorithms.

#!/usr/bin/env python3
import numpy as np
import rerun as rr
from planning_kit import Constraint, StateSpace
def sinusoid_xy_plane(amp=1.0, freq=1.0):
def inner(p):
s = np.sin(2.0 * np.pi * freq * p[0])
c = np.cos(2.0 * np.pi * freq * p[1])
z = amp * (s + c)
return [p[2] - z]
return inner
constraint = Constraint(3, 1, sinusoid_xy_plane(amp=0.1, freq=0.707))
ambient = StateSpace.euclidean(-np.ones(3), np.ones(3))
projected = StateSpace.projected(ambient, constraint)
# Log everything to Rerun!
rr.init("pk.03_constraints", spawn=True)
rr.log_view_coordinates("space", xyz="FLU", timeless=True)
rr.log_points(
"space/ambient",
positions=[ambient.sample_uniform() for _ in range(0, 500)],
colors=[0.3, 0.3, 0.3],
)
rr.log_points(
"space/constrained", positions=[projected.sample_uniform() for _ in range(0, 2000)]
)

Planning

Planner Category Optimal Reference
PRM Multi-query [KSLO96]
RRT Single-query [LaVa98]
RRT-Connect Single-query [KuLa00]

Post-processing

TODO

Application

One potential application is to plan a joint-space trajectory for a robot arm which does not collide with obstacles in the environment. A predefined setup for this problem is defined in planning_kit.KinematicChainProblem. An example demonstrating its usage is provided:

#!/usr/bin/env python3
import sys
import numpy as np
from scipy.interpolate import BSpline, make_interp_spline
import rerun as rr
import rerun_ext as rr_ext
import trimesh
import planning_kit as pkit
def load_mesh(path):
"""Helper function to build a planning_kit.Mesh object using the trimesh
library's loading functionality."""
mesh = trimesh.load_mesh(path)
vertices = np.asarray(mesh.vertices).flatten()
indices = np.asarray(mesh.faces).flatten()
return pkit.Mesh(vertices, indices)
urdf_model_path = sys.argv[1]
collision_mesh_path = sys.argv[2]
ee_frame = sys.argv[3]
with open(urdf_model_path, "r") as f:
urdf = f.read()
collision_mesh = load_mesh(collision_mesh_path)
# Build a pre-baked problem definition for soliving a collision-free joint-space
# trajectory of a kinematic chain.
arm_problem = pkit.KinematicChainProblem(urdf, collision_mesh)
# Define our search space.
nq = arm_problem.nq()
space = pkit.StateSpace.euclidean(-3.14 * np.ones(nq), 3.14 * np.ones(nq))
# Define our start and goal configurations as joint angles.
q_init = np.zeros(nq)
q_goal = np.zeros(nq)
q_goal[0] = 3.0
# Perform an RRT-Connect search. This can easily be replaced with a different
# planning algorithm because the specifics of the search space and state
# validation are abstracted.
graph = pkit.rrt_connect_problem(
space,
arm_problem,
start=q_init,
goal=q_goal,
discretization=0.01,
steering_dist=0.1,
)
# Find the points along the shortest path.
path = graph.shortest_path(space, q_init, q_goal)
# Perform a naive joint-space B-spline interpolation to get a smooth path.
splx = np.linspace(0.0, 1.0, num=len(path.points()))
spl = make_interp_spline(splx, path.points())
# Log everything to Rerun!
rr.init("pk.04_arm_obstacle", spawn=True)
rr.log_view_coordinates("robot", xyz="FLU", timeless=True)
viz_mod = rr_ext.load_urdf_from_file(urdf_model_path)
rr_ext.log_arm_problem_scene(viz_mod, collision_mesh, arm_problem, graph, spl, ee_frame)

04_arm_obstacle.webm

References

[KiMK19]: Z. Kingston, M. Moll, and L. E. Kavraki, "Exploring implicit spaces for constrained sampling-based planning," The International Journal of Robotics Research, vol. 38, no. 10–11, pp. 1151–1178, Sep. 2019, doi: 10.1177/0278364919868530.

[KSLO96]: L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, Aug. 1996, doi: 10.1109/70.508439.

[LaVa98]: S. LaValle, "Rapidly-exploring random trees : a new tool for path planning," The annual research report, 1998, Accessed: May 26, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Rapidly-exploring-random-trees-%3A-a-new-tool-for-LaValle/d967d9550f831a8b3f5cb00f8835a4c866da60ad

[KuLa00]: J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path planning," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA: IEEE, 2000, pp. 995–1001. doi: 10.1109/ROBOT.2000.844730.

About

A toolbox of motion planning primitives

Topics

Resources

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT

Stars

Watchers

Forks

Languages