computational-algebra-0.0.2.0: Well-kinded computational algebra library, currently supporting Groebner basis.

Safe HaskellSafe-Infered

Algebra.Ring.Noetherian

Documentation

class (Commutative r, Ring r) => NoetherianRing r

Instances

NoetherianRing Int 
NoetherianRing Integer 
Integral n => NoetherianRing (Ratio n) 
(Commutative (Complex r), Ring (Complex r)) => NoetherianRing (Complex r) 
(Eq r, NoetherianRing r) => NoetherianRing (Polynomial r) 
(IsOrder order, IsPolynomial r n) => NoetherianRing (OrderedPolynomial r order n)

By Hilbert's finite basis theorem, a polynomial ring over a noetherian ring is also a noetherian ring.

data Ideal r

Constructors

forall n . Ideal (Vector r n) 

Instances

(NoetherianRing r, Eq r, IsMonomialOrder ord) => Monomorphicable Nat (:.: * Nat Ideal (OrderedPolynomial r ord)) 
Eq r => Eq (Ideal r) 
Ord r => Ord (Ideal r) 
Show r => Show (Ideal r) 

addToIdeal :: r -> Ideal r -> Ideal r

toIdeal :: NoetherianRing r => [r] -> Ideal r

appendIdeal :: Ideal r -> Ideal r -> Ideal r

generators :: Ideal r -> [r]

filterIdeal :: NoetherianRing r => (r -> Bool) -> Ideal r -> Ideal r

mapIdeal :: (r -> r') -> Ideal r -> Ideal r'