Skip to content

knightlab-analyses/multiomic-cooccurrences

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

multiomic-cooccurences

This repository holds the analysis scripts and cystic fibrosis datasets to showcase the utility of applying neural networks to learn multi-omics cooccurences.

Run scripts

The scripts within the scripts folder contains scripts used to run mmvec for co-occurrrence analysis and songbird multinomial for differential abundance. Case study specific visualizations and preprocessing can be found within the ipynb notebooks and in the results.

The command used to generate the cystic fibrosis co-occurences is found under the scripts folder. This was a result of multiple rounds of cross validation with parameters with learning rates (1e-5, 1e-6, 1e-7), input priors (0.1, 1, 10), output priors (0.1, 1, 10) and a rank of 3.

When running these commands, it will take a substantial amount of compute time, so be sure to allocate multiple days to run. It is also recommended to run Tensorboard in parallel in order to monitor the convergence of the algorithm.

Notebooks

The notebooks for producing the figures in the manuscript. They are given as follows

  • ipynb/Figure2-simulation.ipynb : Illustration of the CF biofilm simulation
  • ipynb/Figure2_biofilm.ipynb : CF biofilm simulation with addition sampling noise
  • ipynb/Figure2-benchmarks.ipynb : Benchmark figures based on CF biofilm simulation
  • ipynb/Figure3-biocrust.ipynb : Biocrust case study
  • ipynb/Figure4-cystic-fibrosis.ipynb : Cystic Fibrosis case study
  • ipynb/Figure5-high-fat-diet.ipynb : High fat diet case study
  • ipynb/Figure5-inflammatory-bowel-disease.ipynb : IBD multiomics case study
  • ipynb/FigureS2-simulation.ipynb : Scaling simulation / benchmark

There are also auxiliary notebooks on how to extract parameters from a model checkpoint. This is useful for real time diagnostics and debugging.

  • ipynb/recover-CF-parameters.ipynb
  • ipynb/biplot-coordinates.ipynb

Results

This folder contains the checkpoints and diagnostics generated from the command provided in the scripts folder.

benchmark_output : simulation dataset used for the roc-curve analysis on mmvec, SPIEC-EASI, SparCC, proportionality, pearson and spearman soil_output : results from the biocrust case study cf_output : results from the cystic fibrosis case study hfd_output : results from the high fat diet case study ihmp_output : results from the IBD case study

Data files

All the data required to reproduce the analysis can be found under data/.

  • cf_sim : cystic fibrosis biofilm simulations generated from partial differential equations run in matlab using https://github.com/zhangzhongxun/WinCF_model_Code
  • CF : cystic fibrosis data on oxygen gradients. This includes 16S, metabolomics, taxonomies, sample metadata and LCMS annotations
  • soils : 16S and metabolomics abundances for biocrust study
  • HFD : high fat diet study on mice. 16S, metabolomics, taxonomies, sample metadata and LCMS annotations
  • ihmp : IBD multiomicscase study. Taxonomic profiles from metagenomics, 4 metabolomics datasets, sample metadata and LCMS annotations

Rebuttal scripts

All of the scripts used in our response are below

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published