Skip to content

Denoising Diffusion Implicit Models

License

Notifications You must be signed in to change notification settings

klae01/ddim-audio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Audio Generation based on Denoising Diffusion Implicit Models (DDIM)

diffusion model for Audio

Prerequests

Pytorch Transformers

Train a model

python3 main.py --config audio.yml --doc "test" --ni

Sampling from the model

Sampling from the sequence of audio that lead to the sample

You can edit the config file to adjust the num_samples and length(t_size).
See sampling in the config file

Use --sequence {number of intermediates} option.

If you want to get all samples, --sequence -1 or --sequence 0

python3 main.py --config audio.yml --doc "test" --sample --sequence 10 --timesteps 1000 --ni

References and Acknowledgements

@article{song2020denoising,
  title={Denoising Diffusion Implicit Models},
  author={Song, Jiaming and Meng, Chenlin and Ermon, Stefano},
  journal={arXiv:2010.02502},
  year={2020},
  month={October},
  abbr={Preprint},
  url={https://arxiv.org/abs/2010.02502}
}

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages