-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
618 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,296 @@ | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.functional import F | ||
from torch.optim import Adam | ||
from torch_geometric.nn import MetaLayer, MessagePassing | ||
from torch.nn import Sequential as Seq, Linear as Lin, ReLU, Softplus | ||
from torch.autograd import Variable, grad | ||
|
||
def make_packer(n, n_f): | ||
def pack(x): | ||
return x.reshape(-1, n_f*n) | ||
return pack | ||
|
||
def make_unpacker(n, n_f): | ||
def unpack(x): | ||
return x.reshape(-1, n, n_f) | ||
return unpack | ||
|
||
def get_edge_index(n, sim): | ||
if sim in ['string', 'string_ball']: | ||
#Should just be along it. | ||
top = torch.arange(0, n-1) | ||
bottom = torch.arange(1, n) | ||
edge_index = torch.cat( | ||
(torch.cat((top, bottom))[None], | ||
torch.cat((bottom, top))[None]), dim=0 | ||
) | ||
else: | ||
adj = (np.ones((n, n)) - np.eye(n)).astype(int) | ||
edge_index = torch.from_numpy(np.array(np.where(adj))) | ||
|
||
return edge_index | ||
|
||
|
||
class GN(MessagePassing): | ||
def __init__(self, n_f, msg_dim, ndim, hidden=300, aggr='add'): | ||
super(GN, self).__init__(aggr=aggr) # "Add" aggregation. | ||
self.msg_fnc = Seq( | ||
Lin(2*n_f, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
##(Can turn on or off this layer:) | ||
# Lin(hidden, hidden), | ||
# ReLU(), | ||
Lin(hidden, msg_dim) | ||
) | ||
|
||
self.node_fnc = Seq( | ||
Lin(msg_dim+n_f, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
# Lin(hidden, hidden), | ||
# ReLU(), | ||
Lin(hidden, ndim) | ||
) | ||
|
||
#[docs] | ||
def forward(self, x, edge_index): | ||
#x is [n, n_f] | ||
x = x | ||
return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x) | ||
|
||
def message(self, x_i, x_j): | ||
# x_i has shape [n_e, n_f]; x_j has shape [n_e, n_f] | ||
tmp = torch.cat([x_i, x_j], dim=1) # tmp has shape [E, 2 * in_channels] | ||
return self.msg_fnc(tmp) | ||
|
||
def update(self, aggr_out, x=None): | ||
# aggr_out has shape [n, msg_dim] | ||
|
||
tmp = torch.cat([x, aggr_out], dim=1) | ||
return self.node_fnc(tmp) #[n, nupdate] | ||
|
||
|
||
class OGN(GN): | ||
def __init__( | ||
self, n_f, msg_dim, ndim, dt, | ||
edge_index, aggr='add', hidden=300, nt=1): | ||
|
||
super(OGN, self).__init__(n_f, msg_dim, ndim, hidden=hidden, aggr=aggr) | ||
self.dt = dt | ||
self.nt = nt | ||
self.edge_index = edge_index | ||
self.ndim = ndim | ||
|
||
def just_derivative(self, g, augment=False, augmentation=3): | ||
#x is [n, n_f]f | ||
x = g.x | ||
ndim = self.ndim | ||
if augment: | ||
augmentation = torch.randn(1, ndim)*augmentation | ||
augmentation = augmentation.repeat(len(x), 1).to(x.device) | ||
x = x.index_add(1, torch.arange(ndim).to(x.device), augmentation) | ||
|
||
edge_index = g.edge_index | ||
|
||
return self.propagate( | ||
edge_index, size=(x.size(0), x.size(0)), | ||
x=x) | ||
|
||
def loss(self, g, augment=True, square=False, augmentation=3, **kwargs): | ||
if square: | ||
return torch.sum((g.y - self.just_derivative(g, augment=augment, augmentation=augmentation))**2) | ||
else: | ||
return torch.sum(torch.abs(g.y - self.just_derivative(g, augment=augment))) | ||
|
||
|
||
|
||
|
||
class varGN(MessagePassing): | ||
def __init__(self, n_f, msg_dim, ndim, hidden=300, aggr='add'): | ||
super(varGN, self).__init__(aggr=aggr) # "Add" aggregation. | ||
self.msg_fnc = Seq( | ||
Lin(2*n_f, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
# Lin(hidden, hidden), | ||
# ReLU(), | ||
Lin(hidden, msg_dim*2) #mu, logvar | ||
) | ||
|
||
self.node_fnc = Seq( | ||
Lin(msg_dim+n_f, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
Lin(hidden, hidden), | ||
ReLU(), | ||
# Lin(hidden, hidden), | ||
# ReLU(), | ||
Lin(hidden, ndim) | ||
) | ||
self.sample = True | ||
|
||
#[docs] | ||
def forward(self, x, edge_index): | ||
#x is [n, n_f] | ||
x = x | ||
return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x) | ||
|
||
def message(self, x_i, x_j): | ||
# x_i has shape [n_e, n_f]; x_j has shape [n_e, n_f] | ||
tmp = torch.cat([x_i, x_j], dim=1) # tmp has shape [E, 2 * in_channels] | ||
raw_msg = self.msg_fnc(tmp) | ||
mu = raw_msg[:, 0::2] | ||
logvar = raw_msg[:, 1::2] | ||
actual_msg = mu | ||
if self.sample: | ||
actual_msg += torch.randn(mu.shape).to(x_i.device)*torch.exp(logvar/2) | ||
|
||
return actual_msg | ||
|
||
def update(self, aggr_out, x=None): | ||
# aggr_out has shape [n, msg_dim] | ||
|
||
tmp = torch.cat([x, aggr_out], dim=1) | ||
return self.node_fnc(tmp) #[n, nupdate] | ||
|
||
|
||
class varOGN(varGN): | ||
def __init__( | ||
self, n_f, msg_dim, ndim, dt, | ||
edge_index, aggr='add', hidden=300, nt=1): | ||
|
||
super(varOGN, self).__init__(n_f, msg_dim, ndim, hidden=hidden, aggr=aggr) | ||
self.dt = dt | ||
self.nt = nt | ||
self.edge_index = edge_index | ||
self.ndim = ndim | ||
|
||
def just_derivative(self, g, augment=False): | ||
#x is [n, n_f]f | ||
x = g.x | ||
ndim = self.ndim | ||
if augment: | ||
augmentation = torch.randn(1, ndim)*3 | ||
augmentation = augmentation.repeat(len(x), 1).to(x.device) | ||
x = x.index_add(1, torch.arange(ndim).to(x.device), augmentation) | ||
|
||
edge_index = g.edge_index | ||
|
||
return self.propagate( | ||
edge_index, size=(x.size(0), x.size(0)), | ||
x=x) | ||
|
||
def loss(self, g, augment=True, square=False, **kwargs): | ||
if square: | ||
return torch.sum((g.y - self.just_derivative(g, augment=augment))**2) | ||
else: | ||
return torch.sum(torch.abs(g.y - self.just_derivative(g, augment=augment))) | ||
|
||
|
||
class HGN(MessagePassing): | ||
def __init__(self, n_f, ndim, hidden=300): | ||
super(HGN, self).__init__(aggr='add') # "Add" aggregation. | ||
self.pair_energy = Seq( | ||
Lin(2*n_f, hidden), | ||
Softplus(), | ||
Lin(hidden, hidden), | ||
Softplus(), | ||
Lin(hidden, hidden), | ||
Softplus(), | ||
Lin(hidden, 1) | ||
) | ||
|
||
self.self_energy = Seq( | ||
Lin(n_f, hidden), | ||
Softplus(), | ||
Lin(hidden, hidden), | ||
Softplus(), | ||
Lin(hidden, hidden), | ||
Softplus(), | ||
Lin(hidden, 1) | ||
) | ||
self.ndim = ndim | ||
|
||
def forward(self, x, edge_index): | ||
#x is [n, n_f] | ||
x = x | ||
return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x) | ||
|
||
def message(self, x_i, x_j): | ||
# x_i has shape [n_e, n_f]; x_j has shape [n_e, n_f] | ||
tmp = torch.cat([x_i, x_j], dim=1) # tmp has shape [E, 2 * in_channels] | ||
return self.pair_energy(tmp) | ||
|
||
def update(self, aggr_out, x=None): | ||
# aggr_out has shape [n, msg_dim] | ||
|
||
sum_pair_energies = aggr_out | ||
self_energies = self.self_energy(x) | ||
return sum_pair_energies + self_energies | ||
|
||
def just_derivative(self, g, augment=False, augmentation=3): | ||
#x is [n, n_f]f | ||
x = g.x | ||
ndim = self.ndim | ||
if augment: | ||
augmentation = torch.randn(1, ndim)*augmentation | ||
augmentation = augmentation.repeat(len(x), 1).to(x.device) | ||
x = x.index_add(1, torch.arange(ndim).to(x.device), augmentation) | ||
|
||
#Make momenta: | ||
x = Variable(torch.cat((x[:, :ndim], x[:, ndim:2*ndim]*x[:, [-1]*ndim], x[:, 2*ndim:]), dim=1), requires_grad=True) | ||
|
||
edge_index = g.edge_index | ||
total_energy = self.propagate( | ||
edge_index, size=(x.size(0), x.size(0)), | ||
x=x).sum() | ||
|
||
dH = grad(total_energy, x, create_graph=True)[0] | ||
dH_dq = dH[:, :ndim] | ||
dH_dp = dH[:, ndim:2*ndim] | ||
|
||
dq_dt = dH_dp | ||
dp_dt = -dH_dq | ||
dv_dt = dp_dt/x[:, [-1]*ndim] | ||
return torch.cat((dq_dt, dv_dt), dim=1) | ||
|
||
def loss(self, g, augment=True, square=False, reg=True, augmentation=3, **kwargs): | ||
all_derivatives = self.just_derivative(g, augment=augment, augmentation=augmentation) | ||
ndim = self.ndim | ||
dv_dt = all_derivatives[:, self.ndim:] | ||
|
||
if reg: | ||
## If predicting dq_dt too, the following regularization is important: | ||
edge_index = g.edge_index | ||
x = g.x | ||
#make momenta: | ||
x = Variable(torch.cat((x[:, :ndim], x[:, ndim:2*ndim]*x[:, [-1]*ndim], x[:, 2*ndim:]), dim=1), requires_grad=True) | ||
self_energies = self.self_energy(x) | ||
total_energy = self.propagate( | ||
edge_index, size=(x.size(0), x.size(0)), | ||
x=x) | ||
#pair_energies = total_energy - self_energies | ||
#regularization = 1e-3 * torch.sum((pair_energies)**2) | ||
dH = grad(total_energy.sum(), x, create_graph=True)[0] | ||
dH_dother = dH[2*ndim:] | ||
#Punish total energy and gradient with respect to other variables: | ||
regularization = 1e-6 * (torch.sum((total_energy)**2) + torch.sum((dH_dother)**2)) | ||
return torch.sum(torch.abs(g.y - dv_dt)) + regularization | ||
else: | ||
return torch.sum(torch.abs(g.y - dv_dt)) | ||
#return torch.sum(torch.abs(g.y - dv_dt)) | ||
|
||
|
Oops, something went wrong.