Skip to content

Add Roberta converter #2124

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 138 additions & 0 deletions keras_hub/src/utils/transformers/convert_roberta.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
import numpy as np

from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
from keras_hub.src.utils.preset_utils import HF_TOKENIZER_CONFIG_FILE
from keras_hub.src.utils.preset_utils import get_file
from keras_hub.src.utils.preset_utils import load_json

backbone_cls = RobertaBackbone


def convert_backbone_config(transformers_config):
return {
"vocabulary_size": transformers_config["vocab_size"],
"num_layers": transformers_config["num_hidden_layers"],
"num_heads": transformers_config["num_attention_heads"],
"hidden_dim": transformers_config["hidden_size"],
"intermediate_dim": transformers_config["intermediate_size"],
}


def convert_weights(backbone, loader, transformers_config):
# Embedding layer
loader.port_weight(
keras_variable=backbone.get_layer("embeddings").token_embedding.embeddings,
hf_weight_key="roberta.embeddings.word_embeddings.weight",
)
loader.port_weight(
keras_variable=backbone.get_layer("embeddings").position_embedding.position_embeddings,
hf_weight_key="roberta.embeddings.position_embeddings.weight",
hook_fn=lambda hf_tensor, _: hf_tensor[:512], # Take only first 512 positions
)

# Roberta does not use segment embeddings
loader.port_weight(
keras_variable=backbone.get_layer("embeddings_layer_norm").beta,
hf_weight_key="roberta.embeddings.LayerNorm.bias",
)
loader.port_weight(
keras_variable=backbone.get_layer("embeddings_layer_norm").gamma,
hf_weight_key="roberta.embeddings.LayerNorm.weight",
)

def transpose_and_reshape(x, shape):
return np.reshape(np.transpose(x), shape)

# Attention blocks
for i in range(backbone.num_layers):
block = backbone.get_layer(f"transformer_layer_{i}")
attn = block._self_attention_layer
hf_prefix = "roberta.encoder.layer."
# Attention layers
loader.port_weight(
keras_variable=attn.query_dense.kernel,
hf_weight_key=f"{hf_prefix}{i}.attention.self.query.weight",
hook_fn=transpose_and_reshape,
)
loader.port_weight(
keras_variable=attn.query_dense.bias,
hf_weight_key=f"{hf_prefix}{i}.attention.self.query.bias",
hook_fn=lambda hf_tensor, shape: np.reshape(hf_tensor, shape),
)
loader.port_weight(
keras_variable=attn.key_dense.kernel,
hf_weight_key=f"{hf_prefix}{i}.attention.self.key.weight",
hook_fn=transpose_and_reshape,
)
loader.port_weight(
keras_variable=attn.key_dense.bias,
hf_weight_key=f"{hf_prefix}{i}.attention.self.key.bias",
hook_fn=lambda hf_tensor, shape: np.reshape(hf_tensor, shape),
)
loader.port_weight(
keras_variable=attn.value_dense.kernel,
hf_weight_key=f"{hf_prefix}{i}.attention.self.value.weight",
hook_fn=transpose_and_reshape,
)
loader.port_weight(
keras_variable=attn.value_dense.bias,
hf_weight_key=f"{hf_prefix}{i}.attention.self.value.bias",
hook_fn=lambda hf_tensor, shape: np.reshape(hf_tensor, shape),
)
loader.port_weight(
keras_variable=attn.output_dense.kernel,
hf_weight_key=f"{hf_prefix}{i}.attention.output.dense.weight",
hook_fn=transpose_and_reshape,
)
loader.port_weight(
keras_variable=attn.output_dense.bias,
hf_weight_key=f"{hf_prefix}{i}.attention.output.dense.bias",
hook_fn=lambda hf_tensor, shape: np.reshape(hf_tensor, shape),
)
# Attention layer norm.
loader.port_weight(
keras_variable=block._self_attention_layer_norm.beta,
hf_weight_key=f"{hf_prefix}{i}.attention.output.LayerNorm.bias",
)
loader.port_weight(
keras_variable=block._self_attention_layer_norm.gamma,
hf_weight_key=f"{hf_prefix}{i}.attention.output.LayerNorm.weight",
)
# MLP layers
loader.port_weight(
keras_variable=block._feedforward_intermediate_dense.kernel,
hf_weight_key=f"{hf_prefix}{i}.intermediate.dense.weight",
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
)
loader.port_weight(
keras_variable=block._feedforward_intermediate_dense.bias,
hf_weight_key=f"{hf_prefix}{i}.intermediate.dense.bias",
)
loader.port_weight(
keras_variable=block._feedforward_output_dense.kernel,
hf_weight_key=f"{hf_prefix}{i}.output.dense.weight",
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
)
loader.port_weight(
keras_variable=block._feedforward_output_dense.bias,
hf_weight_key=f"{hf_prefix}{i}.output.dense.bias",
)
# Output layer norm.
loader.port_weight(
keras_variable=block._feedforward_layer_norm.beta,
hf_weight_key=f"{hf_prefix}{i}.output.LayerNorm.bias",
)
loader.port_weight(
keras_variable=block._feedforward_layer_norm.gamma,
hf_weight_key=f"{hf_prefix}{i}.output.LayerNorm.weight",
)
# Roberta does not use a pooler layer


def convert_tokenizer(cls, preset, **kwargs):
transformers_config = load_json(preset, HF_TOKENIZER_CONFIG_FILE)
return cls(
get_file(preset, "vocab.txt"),
lowercase=transformers_config["do_lower_case"],
**kwargs,
)
31 changes: 31 additions & 0 deletions keras_hub/src/utils/transformers/convert_roberta_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import pytest

from keras_hub.src.models.backbone import Backbone
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
from keras_hub.src.models.roberta.roberta_text_classifier import RobertaTextClassifier
from keras_hub.src.models.text_classifier import TextClassifier
from keras_hub.src.tests.test_case import TestCase


class TestTask(TestCase):
@pytest.mark.large
def test_convert_tiny_preset(self):
model = RobertaTextClassifier.from_preset("hf://FacebookAI/roberta-base", num_classes=2)
prompt = "That movies was terrible."
model.predict([prompt])

@pytest.mark.large
def test_class_detection(self):
model = TextClassifier.from_preset(
"hf://FacebookAI/roberta-base",
num_classes=2,
load_weights=False,
)
self.assertIsInstance(model, RobertaTextClassifier)
model = Backbone.from_preset(
"hf://FacebookAI/roberta-base",
load_weights=False,
)
self.assertIsInstance(model, RobertaBackbone)

# TODO: compare numerics with huggingface model
3 changes: 3 additions & 0 deletions keras_hub/src/utils/transformers/preset_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from keras_hub.src.utils.transformers import convert_llama3
from keras_hub.src.utils.transformers import convert_mistral
from keras_hub.src.utils.transformers import convert_pali_gemma
from keras_hub.src.utils.transformers import convert_roberta
from keras_hub.src.utils.transformers import convert_vit
from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader

Expand Down Expand Up @@ -39,6 +40,8 @@ def __init__(self, preset, config):
self.converter = convert_mistral
elif model_type == "paligemma":
self.converter = convert_pali_gemma
elif model_type == "roberta":
self.converter = convert_roberta
elif model_type == "vit":
self.converter = convert_vit
else:
Expand Down