Skip to content

NLP-powered tool designed to extract data from PDF documents. Using Optical Character Recognition (OCR) technology and GPT language model, this tool offers the capability to read, interpret, and convert unstructured data in PDFs into structured, usable data formats and provides the output in an Excel sheet.

Notifications You must be signed in to change notification settings

kaufmannb/PDF-Extractor

Repository files navigation

PDF Data Extractor

The PDF Report Data Extractor is a Python application that enables you to extract specific data from PDFs. It processes multiple PDF files located in an input folder, generates answers for user-defined questions using the OpenAI GPT model, and saves the extracted information in an Excel spreadsheet in the output folder.

Features

  • Extracts specific data from PDF files
  • Supports batch processing of multiple PDF files
  • Utilizes the OpenAI GPT model for generating answers
  • Saves the extracted information in an Excel spreadsheet
  • User-friendly GUI for selecting input and output folders, providing question and instruction inputs, and initiating the process

Prerequisites

Before running the application, ensure that you have the following prerequisites:

  • Python 3.10 or later installed on your system
  • Required Python packages installed (specified in requirements.txt)
  • An OpenAI API key for utilizing the OpenAI GPT model (get your key at OpenAI Platform)

Installation

You have two options for installing and using the PDF Data Extractor:

Option 1: Running the Python Application

  1. Clone the repository or download the source code.

  2. Navigate to the project directory using the command line.

  3. Create and activate a virtual environment (optional but recommended).

  4. Install the required dependencies by running the following command: pip install -r requirements.txt

Option 2: Using the Executable File

  1. Download the executable file from PDF Extractor (680 MB).

  2. Run the executable file to install the application.

Usage

  1. Launch the application by running the main_app.py file:

  2. The application GUI will appear.

  3. Click the "Browse Input Folder" button to select the folder containing the PDF files to analyze.

  4. Click the "Browse Output Folder" button to choose the folder where the final Excel file will be saved.

  5. Enter your OpenAI API key in the provided field. This key is necessary for generating answers using the OpenAI GPT model.

  6. Enter a specific question related to the data you want to extract from the PDF reports.

  7. Optionally, provide instructions for how the GPT model should process and structure the answer based on the PDF content.

  8. Click the "Process Files" button to start the extraction process. The application will process the PDF files, generate answers for the specified question, and save the extracted information in the output folder as an Excel spreadsheet.

  9. Monitor the progress of the processing through the displayed status label.

  10. Once the processing is complete, a success message will be displayed, indicating that the Excel file has been generated.

Workflow

Contributing

Contributions to the PDF Report Data Extractor project are welcome! If you find any issues or have suggestions for improvement, please feel free to submit a pull request or open an issue on GitHub.

License

This project is licensed under the MIT License.

About

NLP-powered tool designed to extract data from PDF documents. Using Optical Character Recognition (OCR) technology and GPT language model, this tool offers the capability to read, interpret, and convert unstructured data in PDFs into structured, usable data formats and provides the output in an Excel sheet.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages