Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update leaderboard and documentation with WSI segmentation datasets #596

Merged
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 17 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -214,27 +214,28 @@ and [tutorials](https://kaiko-ai.github.io/eva/dev/user-guide/advanced/replicate

In this section you will find model benchmarks which were generated with _`eva`_.

### Table I: WSI patch-level classification tasks
### Table I: WSI and microscopy image tasks

<br />

<div align="center">

| Model | BACH | CRC | MHIST | PCam | Camelyon16 | PANDA |
|---------|-------|-------|-------|--------|------------|-------|
| ViT-S/16 _(random)_ <sup>[1]</sup> | 0.411|0.613|0.5|0.752|0.551|0.347|
| ViT-S/16 _(ImageNet)_ <sup>[1]</sup> | 0.675|0.936|0.827|0.861|0.751|0.676|
| DINO<sub>(p=16)</sub> <sup>[2]</sup> | 0.77|0.936|0.751|0.905|0.869|0.737|
| Phikon <sup>[3]</sup> | 0.715|0.942|0.766|0.925|0.879|0.784|
| UNI <sup>[4]</sup> | 0.797|0.95|0.835|0.939|0.933|0.774|
| ViT-S/16 _(kaiko.ai)_ <sup>[5]</sup> | 0.8|0.949|0.831|0.902|0.897|0.77|
| ViT-S/8 _(kaiko.ai)_ <sup>[5]</sup> | 0.825|0.948|0.826|0.887|0.879|0.741|
| ViT-B/16 _(kaiko.ai)_ <sup>[5]</sup> | 0.846|0.959|0.839|0.906|0.891|0.753|
| ViT-B/8 _(kaiko.ai)_ <sup>[5]</sup> | 0.867|0.952|0.814|0.921|0.939|0.761|
| ViT-L/14 _(kaiko.ai)_ <sup>[5]</sup> | 0.862|0.935|0.822|0.907|0.941|0.769|

_Table I: Linear probing evaluation of FMs on patch-level downstream datasets.<br> We report averaged balanced accuracy
over 5 runs. Results are reported on the "test" split if available and otherwise on the "validation" split._
| Model | BACH | CRC | MHIST | PCam | Camelyon16 | PANDA | CoNSeP | MoNuSAC |
|---------|-------|-------|-------|--------|------------|-------|------------|-------|
| ViT-S/16 _(random)_ <sup>[1]</sup> | 0.411|0.613|0.5|0.752|0.551|0.347|0.489|0.394|
| ViT-S/16 _(ImageNet)_ <sup>[1]</sup> | 0.675|0.936|0.827|0.861|0.751|0.676|0.54|0.512|
| DINO<sub>(p=16)</sub> <sup>[2]</sup> | 0.77|0.936|0.751|0.905|0.869|0.737|0.625|0.549|
| Phikon <sup>[3]</sup> | 0.715|0.942|0.766|0.925|0.879|0.784|0.68|0.554|
| UNI <sup>[4]</sup> | 0.797|0.95|0.835|0.939|0.933|0.774|0.67|0.575|
| ViT-S/16 _(kaiko.ai)_ <sup>[5]</sup> | 0.8|0.949|0.831|0.902|0.897|0.77|0.622|0.573|
| ViT-S/8 _(kaiko.ai)_ <sup>[5]</sup> | 0.825|0.948|0.826|0.887|0.879|0.741|0.677|0.617|
| ViT-B/16 _(kaiko.ai)_ <sup>[5]</sup> | 0.846|0.959|0.839|0.906|0.891|0.753|0.647|0.572|
| ViT-B/8 _(kaiko.ai)_ <sup>[5]</sup> | 0.867|0.952|0.814|0.921|0.939|0.761|0.706|0.661|
| ViT-L/14 _(kaiko.ai)_ <sup>[5]</sup> | 0.862|0.935|0.822|0.907|0.941|0.769|0.686|0.599|

_Table I: Linear probing evaluation of FMs on patch-level downstream datasets.<br> We report balanced accuracy
for classification tasks and generalized DICE score for semgetnation tasks, averaged over 5 runs. Results are
reported on the "test" split if available and otherwise on the "validation" split._

</div>

Expand Down
13 changes: 10 additions & 3 deletions configs/vision/dino_vit/offline/bcss.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ trainer:
init_args:
n_runs: &N_RUNS ${oc.env:N_RUNS, 1}
default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:TIMM_MODEL_NAME, vit_small_patch16_224}/bcss}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 513}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000}
log_every_n_steps: 6
callbacks:
- class_path: eva.callbacks.ConfigurationLogger
Expand All @@ -22,7 +22,7 @@ trainer:
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 100
patience: 8
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
- class_path: eva.callbacks.SegmentationEmbeddingsWriter
Expand All @@ -31,7 +31,9 @@ trainer:
dataloader_idx_map:
0: train
1: val
2: test
metadata_keys: ["coords"]
overwrite: true
backbone:
class_path: eva.vision.models.networks.encoders.TimmEncoder
init_args:
Expand Down Expand Up @@ -62,7 +64,7 @@ model:
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.002
lr: 0.0001
lr_scheduler:
class_path: torch.optim.lr_scheduler.PolynomialLR
init_args:
Expand Down Expand Up @@ -104,6 +106,11 @@ data:
init_args:
<<: *DATASET_ARGS
split: val
test:
class_path: eva.vision.datasets.EmbeddingsSegmentationDataset
init_args:
<<: *DATASET_ARGS
split: test
predict:
- class_path: eva.vision.datasets.BCSS
init_args: &PREDICT_DATASET_ARGS
Expand Down
7 changes: 4 additions & 3 deletions configs/vision/dino_vit/offline/consep.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ trainer:
init_args:
n_runs: &N_RUNS ${oc.env:N_RUNS, 1}
default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:TIMM_MODEL_NAME, vit_small_patch16_224_dino}/consep}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 513}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000}
log_every_n_steps: 6
callbacks:
- class_path: eva.callbacks.ConfigurationLogger
Expand All @@ -22,7 +22,7 @@ trainer:
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 100
patience: 34
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
- class_path: eva.callbacks.SegmentationEmbeddingsWriter
Expand All @@ -32,6 +32,7 @@ trainer:
0: train
1: val
metadata_keys: ["coords"]
overwrite: true
backbone:
class_path: eva.vision.models.networks.encoders.TimmEncoder
init_args:
Expand Down Expand Up @@ -63,7 +64,7 @@ model:
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.002
lr: 0.0001
lr_scheduler:
class_path: torch.optim.lr_scheduler.PolynomialLR
init_args:
Expand Down
10 changes: 7 additions & 3 deletions configs/vision/dino_vit/offline/monusac.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,13 @@ trainer:
init_args:
n_runs: &N_RUNS ${oc.env:N_RUNS, 1}
default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:TIMM_MODEL_NAME, vit_small_patch16_224_dino}/monusac}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 513}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000}
log_every_n_steps: 6
callbacks:
- class_path: eva.callbacks.ConfigurationLogger
- class_path: lightning.pytorch.callbacks.LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: eva.vision.callbacks.SemanticSegmentationLogger
init_args:
log_every_n_epochs: 1
Expand All @@ -22,7 +25,7 @@ trainer:
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 100
patience: 50
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
- class_path: eva.callbacks.SegmentationEmbeddingsWriter
Expand All @@ -31,6 +34,7 @@ trainer:
dataloader_idx_map:
0: train
1: test
overwrite: true
backbone:
class_path: eva.vision.models.networks.encoders.TimmEncoder
init_args:
Expand Down Expand Up @@ -62,7 +66,7 @@ model:
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.002
lr: 0.0001
lr_scheduler:
class_path: torch.optim.lr_scheduler.PolynomialLR
init_args:
Expand Down
143 changes: 143 additions & 0 deletions configs/vision/phikon/offline/bcss.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
---
trainer:
class_path: eva.Trainer
init_args:
n_runs: &N_RUNS ${oc.env:N_RUNS, 1}
default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/phikon/bcss}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000}
log_every_n_steps: 6
callbacks:
- class_path: eva.callbacks.ConfigurationLogger
- class_path: eva.vision.callbacks.SemanticSegmentationLogger
init_args:
log_every_n_epochs: 1
log_images: false
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/GeneralizedDiceScore}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 8
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
- class_path: eva.callbacks.SegmentationEmbeddingsWriter
init_args:
output_dir: &DATASET_EMBEDDINGS_ROOT ${oc.env:EMBEDDINGS_ROOT, ./data/embeddings}/phikon/bcss
dataloader_idx_map:
0: train
1: val
2: test
metadata_keys: ["coords"]
overwrite: true
backbone:
class_path: eva.models.HuggingFaceModel
init_args:
model_name_or_path: owkin/phikon
tensor_transforms:
class_path: eva.core.models.networks.transforms.ExtractPatchFeatures
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: *OUTPUT_ROOT
name: ""
model:
class_path: eva.vision.models.modules.SemanticSegmentationModule
init_args:
decoder:
class_path: eva.vision.models.networks.decoders.segmentation.ConvDecoderMS
init_args:
in_features: ${oc.env:DECODER_IN_FEATURES, 768}
num_classes: &NUM_CLASSES 6
criterion:
class_path: eva.vision.losses.DiceLoss
init_args:
softmax: true
batch: true
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.0001
lr_scheduler:
class_path: torch.optim.lr_scheduler.PolynomialLR
init_args:
total_iters: *MAX_STEPS
power: 0.9
postprocess:
predictions_transforms:
- class_path: torch.argmax
init_args:
dim: 1
metrics:
common:
- class_path: eva.metrics.AverageLoss
evaluation:
- class_path: eva.core.metrics.defaults.MulticlassSegmentationMetrics
init_args:
num_classes: *NUM_CLASSES
- class_path: torchmetrics.ClasswiseWrapper
init_args:
metric:
class_path: eva.core.metrics.GeneralizedDiceScore
init_args:
num_classes: *NUM_CLASSES
input_format: index
weight_type: linear
per_class: true
data:
class_path: eva.DataModule
init_args:
datasets:
train:
class_path: eva.vision.datasets.EmbeddingsSegmentationDataset
init_args: &DATASET_ARGS
root: *DATASET_EMBEDDINGS_ROOT
manifest_file: manifest.csv
split: train
val:
class_path: eva.vision.datasets.EmbeddingsSegmentationDataset
init_args:
<<: *DATASET_ARGS
split: val
test:
class_path: eva.vision.datasets.EmbeddingsSegmentationDataset
init_args:
<<: *DATASET_ARGS
split: test
predict:
- class_path: eva.vision.datasets.BCSS
init_args: &PREDICT_DATASET_ARGS
root: ${oc.env:DATA_ROOT, ./data}/bcss
split: train
sampler:
class_path: eva.vision.data.wsi.patching.samplers.GridSampler
init_args:
max_samples: 1000
transforms:
class_path: eva.vision.data.transforms.common.ResizeAndCrop
init_args:
size: ${oc.env:RESIZE_DIM, 224}
mean: &NORMALIZE_MEAN ${oc.env:NORMALIZE_MEAN, [0.485, 0.456, 0.406]}
std: &NORMALIZE_STD ${oc.env:NORMALIZE_STD, [0.229, 0.224, 0.225]}
- class_path: eva.vision.datasets.BCSS
init_args:
<<: *PREDICT_DATASET_ARGS
split: val
- class_path: eva.vision.datasets.BCSS
init_args:
<<: *PREDICT_DATASET_ARGS
split: test
dataloaders:
train:
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 64}
shuffle: true
val:
batch_size: *BATCH_SIZE
test:
batch_size: *BATCH_SIZE
predict:
batch_size: &PREDICT_BATCH_SIZE ${oc.env:PREDICT_BATCH_SIZE, 64}
6 changes: 3 additions & 3 deletions configs/vision/phikon/offline/consep.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ trainer:
init_args:
n_runs: &N_RUNS ${oc.env:N_RUNS, 1}
default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/phikon/consep}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 513}
max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000}
log_every_n_steps: 6
callbacks:
- class_path: eva.callbacks.ConfigurationLogger
Expand All @@ -22,7 +22,7 @@ trainer:
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 100
patience: 34
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
- class_path: eva.callbacks.SegmentationEmbeddingsWriter
Expand Down Expand Up @@ -59,7 +59,7 @@ model:
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.002
lr: 0.0001
lr_scheduler:
class_path: torch.optim.lr_scheduler.PolynomialLR
init_args:
Expand Down
Loading