Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Readme file for metric results #85

Merged
merged 1 commit into from
May 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions benckmarks.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
**Metrics on Mozilla-Foundation/Common-Voice-17-0 dataset**

| Model | Metric Value |
| ------------------------------------ | ------------ |
| distil-whisper/distil-large-v3 | 120.48 |
| distil-whisper/distil-large-v3 + Hqq | 120.88 |

Hqq: https://github.com/mobiusml/hqq/
125 changes: 68 additions & 57 deletions whisperplus/audio_eval.py
Original file line number Diff line number Diff line change
@@ -1,72 +1,83 @@
import torch
from datasets import load_dataset
from evaluate import load
from hqq.core.quantize import HQQBackend, HQQLinear
from hqq.utils.patching import prepare_for_inference
from pipelines.whisper import SpeechToTextPipeline
from tqdm import tqdm
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, BitsAndBytesConfig, HqqConfig, pipeline
from transformers.pipelines.pt_utils import KeyDataset

from whisperplus.pipelines.whisper import SpeechToTextPipeline
model_id = "distil-whisper/distil-large-v3"
processor = AutoProcessor.from_pretrained(model_id)

HQQLinear.set_backend(HQQBackend.PYTORCH) # Pytorch backend
HQQLinear.set_backend(HQQBackend.PYTORCH_COMPILE) # Compiled Pytorch via dynamo
HQQLinear.set_backend(HQQBackend.ATEN) # C++ Aten/CUDA backend (set automatically by default if available)

model_id = "distil-whisper/distil-large-v3"
def hqq_load_model():
from hqq.core.quantize import HQQBackend, HQQLinear
from hqq.utils.patching import prepare_for_inference

hqq_config = HqqConfig(
nbits=4,
group_size=64,
quant_zero=False,
quant_scale=False,
axis=0,
offload_meta=False,
) # axis=0 is used by default
HQQLinear.set_backend(HQQBackend.PYTORCH) # Pytorch backend
HQQLinear.set_backend(HQQBackend.PYTORCH_COMPILE) # Compiled Pytorch via dynamo
HQQLinear.set_backend(
HQQBackend.ATEN) # C++ Aten/CUDA backend (set automatically by default if available)

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
hqq_config = HqqConfig(
nbits=4,
group_size=64,
quant_zero=False,
quant_scale=False,
axis=0,
offload_meta=False,
) # axis=0 is used by default

model = SpeechToTextPipeline(model_id="distil-whisper/distil-large-v3", quant_config=hqq_config)
model = SpeechToTextPipeline(model_id="distil-whisper/distil-large-v3", quant_config=hqq_config)
model = model.model
return model

model = model.model

processor = AutoProcessor.from_pretrained(model_id)
def base_load_model():
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_safetensors=True,
device="cuda:0",
)

return model


def calculate_metrics(model, processor, model_id):
pipe = pipeline(
"automatic-speech-recognition",
model=model,
torch_dtype=torch.bfloat16,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
model_kwargs={"use_flash_attention_2": True},
)

wer_metric = load("wer")

common_voice_test = load_dataset(
"mozilla-foundation/common_voice_17_0", # mozilla-foundation/common_voice_17_0
"dv",
split="test")

all_predictions = []

# run streamed inference
for prediction in tqdm(
pipe(
KeyDataset(common_voice_test, "audio"),
max_new_tokens=128,
generate_kwargs={"task": "transcribe"},
batch_size=32,
),
total=len(common_voice_test),
):
all_predictions.append(prediction["text"])

wer_ortho = 100 * wer_metric.compute(
references=common_voice_test["sentence"], predictions=all_predictions)

pipe = pipeline(
"automatic-speech-recognition",
model=model,
torch_dtype=torch.bfloat16,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
model_kwargs={"use_flash_attention_2": True},
)

wer_metric = load("wer")

common_voice_test = load_dataset(
"mozilla-foundation/common_voice_17_0", # mozilla-foundation/common_voice_17_0
"dv",
split="test")

all_predictions = []

# run streamed inference
for prediction in tqdm(
pipe(
KeyDataset(common_voice_test, "audio"),
max_new_tokens=128,
generate_kwargs={"task": "transcribe"},
batch_size=32,
),
total=len(common_voice_test),
):
all_predictions.append(prediction["text"])

wer_ortho = 100 * wer_metric.compute(references=common_voice_test["sentence"], predictions=all_predictions)

print(f"WER: {wer_ortho:.2f}%")
print(f"WER: {wer_ortho:.2f}%")
return wer_ortho
Loading