Skip to content

Commit

Permalink
Merge branch 'main' into v131
Browse files Browse the repository at this point in the history
  • Loading branch information
jyaacoub authored Aug 2, 2024
2 parents b3e52a9 + f503053 commit 1feff7c
Show file tree
Hide file tree
Showing 3 changed files with 193 additions and 12 deletions.
11 changes: 11 additions & 0 deletions results/v128/model_media/model_stats.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
run,cindex,pearson,spearman,mse,mae,rmse
DGM_PDBbind1D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6700303728768234,0.5066764643691913,0.4877355421142711,2.8944340651943885,1.3393119536913358,1.7013036369779466
DGM_PDBbind0D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6920256384153837,0.5521166195053873,0.5492833432385198,2.6901810056403943,1.2902274471429678,1.6401771263008134
DGM_PDBbind2D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6860817317553821,0.5349021289716281,0.5292561754408733,2.783316931934153,1.3007997966913076,1.668327585318349
DGM_PDBbind4D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6814616054321716,0.5209332896962908,0.5205006093028853,2.791164015918997,1.3129914098152748,1.6706777115646805
DGM_PDBbind3D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6886407871725875,0.5377497788348156,0.536984917834154,2.7892612584388665,1.3068153142929078,1.6701081577068195
DGM_PDBbind0D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6791215578161572,0.5426811555689641,0.5087142971057145,2.7253219488991136,1.2940673363869717,1.6508549145515827
DGM_PDBbind2D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6935974149775556,0.5590003871276702,0.5527753938595599,2.613210370957274,1.2817467006748329,1.616542721661656
DGM_PDBbind1D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6776316790562161,0.5208748506408137,0.5056665537333501,2.79682269540488,1.3061289907536988,1.672370382243383
DGM_PDBbind3D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6772535031619085,0.5129702979170532,0.5079117445737773,2.876293932539623,1.343678560827124,1.69596401274898
DGM_PDBbind4D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6803930344028177,0.5261288742927207,0.5152003489955188,2.7888457682850523,1.3061685765992026,1.669983762880661
11 changes: 11 additions & 0 deletions results/v128/model_media/model_stats_val.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
run,cindex,pearson,spearman,mse,mae,rmse
DGM_PDBbind1D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6865570848103539,0.5217828035285198,0.5342788004080268,3.12362316791697,1.4128894441393012,1.7673774831418922
DGM_PDBbind0D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6856114868115144,0.5126870149038275,0.5317248936648343,3.3695982839888123,1.4536717794904257,1.8356465574801737
DGM_PDBbind2D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6727143444861741,0.5022869639192042,0.5008407950347942,3.421695656587546,1.4982888305121282,1.849782597114468
DGM_PDBbind4D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.6923138709195878,0.5430234761140276,0.5501681361051465,2.9685919834473102,1.3589257854182952,1.7229602384986458
DGM_PDBbind3D_nomsaF_binaryE_64B_0.0001LR_0.4D_2000E_originalLF_binaryLE,0.7221237704365324,0.5997226273753726,0.6282960957077218,3.071004525264972,1.3901743548518686,1.7524281797737025
DGM_PDBbind0D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6765066849227523,0.5001545914726073,0.5133105406519389,3.044526199847986,1.3962691384923704,1.7448570714668827
DGM_PDBbind2D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.7083260415364561,0.5949781068309761,0.5895379695932953,2.563278684581813,1.274137923604572,1.601024261084701
DGM_PDBbind1D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6854165476207483,0.5218685304168357,0.535423559993022,2.837139616188374,1.326142185326017,1.6843810780783468
DGM_PDBbind3D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6752795639801628,0.5022118247529487,0.5077603820327848,3.2012135060951,1.425228337672172,1.7891935351143822
DGM_PDBbind4D_nomsaF_aflowE_128B_0.0009185598967356679LR_0.22880989869337157D_2000E_originalLF_binaryLE,0.6843307790913993,0.5107948247428088,0.5298336871787266,2.9007170257795094,1.3341726068459485,1.7031491495989155
183 changes: 171 additions & 12 deletions src/utils/pocket_alignment.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,27 @@
mask from a binding pocket sequence.
"""

import json
import os
import shutil

from Bio import Align
from Bio.Align import substitution_matrices
import pandas as pd
import torch

from src.data_prep.downloaders import Downloader


def create_pocket_mask(target_seq: str, query_seq: str) -> list[bool]:
def create_pocket_mask(target_seq: str, pocket_seq: str) -> list[bool]:
"""
Return an index mask of a pocket on a protein sequence.
Parameters
----------
target_seq : str
The protein sequence you want to query in
query_seq : str
pocket_seq : str
The binding pocket sequence for the protein
Returns
Expand All @@ -25,6 +32,8 @@ def create_pocket_mask(target_seq: str, query_seq: str) -> list[bool]:
A boolean list of indices that are True if the residue at that
position is part of the binding pocket and false otherwise
"""
# Ensure that no '-' characters are present in the query sequence
query_seq = pocket_seq.replace('-', 'X')
# Taken from tutorial https://biopython.org/docs/dev/Tutorial/chapter_pairwise.html
aligner = Align.PairwiseAligner()
# Pairwise alignment parameters as specified in paragraph 2
Expand Down Expand Up @@ -92,15 +101,165 @@ def mask_graph(data, mask: list[bool]):
return data


def _parse_json(json_path: str) -> str:
"""
Parse a JSON file that holds binding pocket data downloaded from KLIFS.
Parameters
----------
json_path : str
The path to the JSON file
Returns
-------
str
The binding pocket sequence
"""
with open(json_path, 'r') as json_file:
data = json.load(json_file)
return data[0]['pocket']


def get_dataset_binding_pockets(
dataset_path: str = 'data/DavisKibaDataset/kiba/nomsa_binary_original_binary/full',
pockets_path: str = 'data/DavisKibaDataset/kiba_pocket'
) -> tuple[dict[str, str], set[str]]:
"""
Get all binding pocket sequences for a dataset
Parameters
----------
dataset_path : str
The path to the directory containing the dataset (as of July 24, 2024,
only expecting Kiba dataset). Specify only the path to one of 'davis', 'kiba',
or 'PDBbind' (e.g., 'data/DavisKibaDataset/kiba')
pockets_path: str
The path to the new dataset directory after all the binding pockets have been found
Returns
-------
tuple[dict[str, str], set[str]]
A tuple consisting of:
-A map of protein ID, binding pocket sequence pairs
-A set of protein IDs with no KLIFS binding pockets
"""
csv_path = os.path.join(dataset_path, 'cleaned_XY.csv')
df = pd.read_csv(csv_path, usecols=['prot_id'])
prot_ids = list(set(df['prot_id']))
# Strip out mutations and '-(alpha, beta, gamma)' tags if they are present,
# the binding pocket sequence will be the same for mutated and non-mutated genes
prot_ids = [id.split('(')[0].split('-')[0] for id in prot_ids]
dl = Downloader()
seq_save_dir = os.path.join(pockets_path, 'pockets')
os.makedirs(seq_save_dir, exist_ok=True)
download_check = dl.download_pocket_seq(prot_ids, seq_save_dir)
download_errors = set()
for key, val in download_check.items():
if val == 400:
download_errors.add(key)
sequences = {}
for file in os.listdir(seq_save_dir):
pocket_seq = _parse_json(os.path.join(seq_save_dir, file))
if pocket_seq == 0 or len(pocket_seq) == 0:
download_errors.add(file.split('.')[0])
else:
sequences[file.split('.')[0]] = pocket_seq
return (sequences, download_errors)


def create_binding_pocket_dataset(
dataset_path: str,
pocket_sequences: dict[str, str],
download_errors: set[str],
new_dataset_path: str
) -> None:
"""
Apply the graph mask based on binding pocket sequence for each
Data object in a PyTorch dataset.
dataset_path : str
The path to the PyTorch dataset object to be transformed
pocket_sequences : dict[str, str]
A map of protein ID, binding pocket sequence pairs
download_errors : set[str]
A set of protein IDs that have no binding pocket sequence
to be downloaded from KLIFS
new_dataset_path : str
A path to where the new dataset should be saved
"""
dataset = torch.load(dataset_path)
new_dataset = {}
for id, data in dataset.items():
# If there are any mutations or (-alpha,beta,gamma) tags, strip them
stripped_id = id.split('(')[0].split('-')[0]
if stripped_id not in download_errors:
mask = create_pocket_mask(data.pro_seq, pocket_sequences[stripped_id])
new_data = mask_graph(data, mask)
new_dataset[id] = new_data
os.makedirs(os.path.dirname(new_dataset_path), exist_ok=True)
torch.save(dataset, new_dataset_path)


def binding_pocket_filter(dataset_csv_path: str, download_errors: set[str], csv_save_path: str):
"""
Filter out protein IDs that do not have a corresponding KLIFS
binding pocket sequence from the dataset.
Parameters
----------
dataset_csv_path : str
The path to the original cleaned CSV. Will probably be a CSV named cleaned_XY.csv
or something like that.
download_errors : set[str]
A set of protein IDs with no KLIFS binding pocket sequences.
csv_save_path : str
The path to save the new CSV file to.
"""
df = pd.read_csv(dataset_csv_path)
df = df[~df['prot_id'].isin(download_errors)]
os.makedirs(os.path.dirname(csv_save_path), exist_ok=True)
df.to_csv(csv_save_path)


def pocket_dataset_full(
dataset_dir: str,
pocket_dir: str,
save_dir: str
) -> None:
"""
Create all elements of a dataset that includes binding pockets. This
function assumes the PyTorch object holding the dataset is named 'data_pro.pt'
and the CSV holding the cleaned data is named 'cleaned_XY.csv'.
Parameters
----------
dataset_dir : str
The path to the dataset to be transformed
pocket_dir : str
The path to where the dataset raw pocket sequences are to be saved
save_dir : str
The path to where the new dataset is to be saved
"""
pocket_map, download_errors = get_dataset_binding_pockets(dataset_dir, pocket_dir)
print(f'Binding pocket sequences were not found for the following {len(download_errors)} protein IDs:')
print(','.join(list(download_errors)))
create_binding_pocket_dataset(
os.path.join(dataset_dir, 'data_pro.pt'),
pocket_map,
download_errors,
os.path.join(save_dir, 'data_pro.pt')
)
binding_pocket_filter(
os.path.join(dataset_dir, 'cleaned_XY.csv'),
download_errors,
os.path.join(save_dir, 'cleaned_XY.csv')
)
shutil.copy2(os.path.join(dataset_dir, 'data_mol.pt'), os.path.join(save_dir, 'data_mol.pt'))


if __name__ == '__main__':
graph_data = torch.load('sample_pro_data.torch')
seq = graph_data.pro_seq
seq = seq[:857] + 'R' + seq[858:]
graph_data.pro_seq = seq
torch.save(graph_data, 'sample_pro_data_unmutated.torch')
binding_pocket_sequence = 'KVLGSGAFGTVYKVAIKELEILDEAYVMASVDPHVCRLLGIQLITQLMPFGCLLDYVREYLEDRRLVHRDLAARNVLVITDFGLA'
mask = create_pocket_mask(
graph_data.pro_seq,
binding_pocket_sequence
pocket_dataset_full(
'data/DavisKibaDataset/kiba/nomsa_binary_original_binary/full/',
'data/DavisKibaDataset/kiba_pocket',
'data/DavisKibaDataset/kiba_pocket/nomsa_binary_original_binary/full/'
)
masked_data = mask_graph(graph_data, mask)

0 comments on commit 1feff7c

Please sign in to comment.