-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
Showing
1 changed file
with
99 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
#%% 1.Gather data for davis,kiba and pdbbind datasets | ||
import os | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from src.analysis.utils import combine_dataset_pids | ||
from src import config as cfg | ||
df_prots = pd.read_csv('../data/all_prots_bindingdb.csv') | ||
|
||
|
||
#%% 2. Load TCGA data | ||
df_tcga = pd.read_csv('../data/TCGA_ALL.maf', sep='\t') | ||
|
||
#%% 3. Pre filtering | ||
df_tcga = df_tcga[df_tcga['Variant_Classification'] == 'Missense_Mutation'] | ||
df_tcga['seq_len'] = pd.to_numeric(df_tcga['Protein_position'].str.split('/').str[1]) | ||
df_tcga = df_tcga[df_tcga['seq_len'] < 5000] | ||
df_tcga['seq_len'].plot.hist(bins=100, title="sequence length histogram capped at 5K") | ||
plt.show() | ||
df_tcga = df_tcga[df_tcga['seq_len'] < 1200] | ||
df_tcga['seq_len'].plot.hist(bins=100, title="sequence length after capped at 1.2K") | ||
|
||
#%% 4. Merging df_prots with TCGA | ||
df_tcga['uniprot'] = df_tcga['SWISSPROT'].str.split('.').str[0] | ||
|
||
dfm = df_tcga.merge(df_prots[df_prots.db != 'davis'], | ||
left_on='uniprot', right_on='prot_id', how='inner') | ||
|
||
# for davis we have to merge on HUGO_SYMBOLS | ||
dfm_davis = df_tcga.merge(df_prots[df_prots.db == 'davis'], | ||
left_on='Hugo_Symbol', right_on='prot_id', how='inner') | ||
|
||
dfm = pd.concat([dfm,dfm_davis], axis=0) | ||
|
||
del dfm_davis # to save mem | ||
#%% | ||
tcga_tss = pd.read_csv('../data/tcga_code_tables/tissueSourceSite.tsv', sep='\t') | ||
tcga_bcr = pd.read_csv('../data/tcga_code_tables/bcrBatchCode.tsv', sep='\t') | ||
tcga_codes = tcga_tss.merge(tcga_bcr.drop_duplicates(subset='Study Name'), on='Study Name', how='left') | ||
tcga_codes = tcga_codes[['TSS Code', 'Study Abbreviation']] | ||
|
||
#%% | ||
dfm['TSS Code'] = dfm['Tumor_Sample_Barcode'].str.split('-').str[1] # get second id to match with TSS code for cancer type | ||
dfm = dfm.merge(tcga_codes, on='TSS Code', how='left') | ||
|
||
# %% 5. Post filtering step | ||
# 5.1. Filter for only those sequences with matching sequence length (to get rid of nonmatched isoforms) | ||
# seq_len_x is from tcga, seq_len_y is from our dataset | ||
tmp = len(dfm) | ||
# allow for some error due to missing amino acids from pdb file in PDBbind dataset | ||
# - assumption here is that isoforms will differ by more than 50 amino acids | ||
dfm = dfm[(dfm.seq_len_y <= dfm.seq_len_x) & (dfm.seq_len_x<= dfm.seq_len_y+50)] | ||
print(f"Filter #1 (seq_len) : {tmp:5d} - {tmp-len(dfm):5d} = {len(dfm):5d}") | ||
|
||
# 5.2. Filter out those that dont have the same reference seq according to the "Protein_position" and "Amino_acids" col | ||
|
||
# Extract mutation location and reference amino acid from 'Protein_position' and 'Amino_acids' columns | ||
dfm['mt_loc'] = pd.to_numeric(dfm['Protein_position'].str.split('/').str[0]) | ||
dfm = dfm[dfm['mt_loc'] < dfm['seq_len_y']] | ||
dfm[['ref_AA', 'mt_AA']] = dfm['Amino_acids'].str.split('/', expand=True) | ||
|
||
dfm['db_AA'] = dfm.apply(lambda row: row['prot_seq'][row['mt_loc']-1], axis=1) | ||
|
||
# Filter #2: Match proteins with the same reference amino acid at the mutation location | ||
tmp = len(dfm) | ||
dfm = dfm[dfm['db_AA'] == dfm['ref_AA']] | ||
print(f"Filter #2 (ref_AA match): {tmp:5d} - {tmp-len(dfm):5d} = {len(dfm):5d}") | ||
print('\n',dfm.db.value_counts()) | ||
|
||
# %% final seq len distribution | ||
|
||
n_bins = 25 | ||
lengths = dfm.seq_len_x | ||
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) | ||
|
||
# Plot histogram | ||
n, bins, patches = ax.hist(lengths, bins=n_bins, color='blue', alpha=0.7) | ||
ax.set_title('TCGA final filtering for db matches') | ||
|
||
# Add counts to each bin | ||
for count, x, patch in zip(n, bins, patches): | ||
ax.text(x + 0.5, count, str(int(count)), ha='center', va='bottom') | ||
|
||
ax.set_xlabel('Sequence Length') | ||
ax.set_ylabel('Frequency') | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
|
||
# %% Getting updated sequences | ||
def apply_mut(row): | ||
ref_seq = list(row['prot_seq']) | ||
ref_seq[row['mt_loc']-1] = row['mt_AA'] | ||
return ''.join(ref_seq) | ||
|
||
dfm['mt_seq'] = dfm.apply(apply_mut, axis=1) | ||
|
||
|
||
# %% | ||
dfm.to_csv("/cluster/home/t122995uhn/projects/data/tcga/tcga_maf_davis_pdbbind.csv") |