-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatchprocess.m
103 lines (69 loc) · 2.55 KB
/
batchprocess.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
%% MONKEY NAME AND DATA PATH
global mk
mk = 'mango';
global DATADIR
DATADIR ='E:\work\data\socialInteractionProject\';
%% EXPERIMENTAL SESSIONS
% MANGO - Monkey M
% one session AND 3 targets
% NOTE: In april, Omitdup was not set to 0 in BMI. Therefore, target_x is
% not equal to target_y
% sessions = [20130409,20130416,20130502,20130507];
% juice ratios (in the order of sessions) = [600/150, 600/100, 600/100, 600/100]
% two sessions with different reward ratios AND 3 targets
% sessions = [20130508,20131010]; % 600/300, 300/100, 300/100 % session on
% 20130509 has some missing strobes!!
% sessions = [201305081,201305091,201305101]; % 700/100, 600/100, 600/100
% two sessions with different levels of competition AND 4 targets (instead of 3)
sessions = [20131011,20131014,20131015]; %500/200, 500/200, 500/200
% OPHELIA - Monkey O (watch out for alignment issues!)
% one session AND 3 targets
% sessions = [20130304,20130306,20130308,20130318,20130325];
% sessions = [20130409,20130416,20130502,20130507];
% sessions = [20130409,20130416,20130502,20130507,20130508,201305081,201305091,20130510,201305101];
% sessions = [20130508,20130510,201305081,201305091,201305101];
sessions = [20130502];
RT = cell(4,3);
RT2 = RT;
outcome = cell(4,3);
outcome2 = outcome;
%% Sessionwise analysis
for i=1:length(sessions)
sessiondate = sessions(i);
%% convert plx2mat
% cd('E:\work\plx2mat');
% convertPlx2Mat(sessiondate);
% cd('E:\work\data\socialInteractionProject\');
%% preprocessing
% preProcess(sessiondate);
% % %
% getTrialtypes(sessiondate)
% getTrialtypes4(sessiondate)
% % %
% % % % %% integrate and bin neural data
% integrateAndBinAllNeuralData(sessiondate,50,1); % 50 msec bins
% integrateAndBinAllNeuralData(sessiondate,10,1); % 10 msec bins
%% behavioral assessments
% 1) obtain and save RT, MT and average velocity
% getRT(sessiondate)
% 2) Get RT or MT or RT+MT or avgVel, sorted by trialtype and merge the
% cells across sessions.
% [temp_RT,temp_outcome] = compareBehavior(sessiondate,'RT+MT');
% RT = cellfun(@(x,y) [x,y],RT,temp_RT,'un',0);
% outcome = cellfun(@(x,y) [x,y],outcome,temp_outcome,'un',0);
% temp_RT =[];temp_outcome=[];
% %
% if i>2
% [temp_RT,temp_outcome] = compareBehavior(sessiondate,'RT+MT');
% RT2 = cellfun(@(x,y) [x,y],RT2,temp_RT,'un',0);
% outcome2 = cellfun(@(x,y) [x,y],outcome2,temp_outcome,'un',0);
% temp_RT =[];temp_outcome=[];
% end
% 3) plot trajectory
plotTrajectory(sessiondate)
end
y=1;
%% Multiple session analysis scripts
% compareBehaviorAcrossSessions
compareBetweenSamedaySessions.m
y=1;