a Python utility library for working with SQL tables
pip install schematable
Go from zero to SQL query in seconds with near-zero boilerplate:
import schematable as st
schdl = st.SchemaTable('schedule') # at minimum it needs a table name
print(schdl.db_url) # sqlite:///:memory:
print(schdl.engine) # <class 'sqlalchemy.engine.base.Engine'>
create_table_stmt = '''
create table schedule
(
start_time timestamp,
end_time timestamp,
event_name text,
id int not null
constraint schedule_pk
primary key
);
'''
schdl.engine.execute(create_table_stmt)
insert_records_stmt = '''
INSERT INTO schedule (start_time, end_time, event_name, id) VALUES ('1583531261000', '1583534865000', 'walk the doggy 🐶', 1);
'''
insert_records_stmt_2 = '''
INSERT INTO schedule (start_time, end_time, event_name, id) VALUES ('1583708400000', '1583632800000', 'take a nap 😴', 2);
'''
schdl.engine.execute(insert_records_stmt)
schdl.engine.execute(insert_records_stmt_2)
rows = schdl.engine.execute('select event_name from schedule').fetchall()
print(rows) # ['walk the doggy 🐶', 'take a nap 😴']
With sqlalchemy
under the hood you can connect to tables from all types of SQL databases:
import schematable as st
schdl = st.SchemaTable(
db_url='postgres://user:password@localhost:5432/foo',
schema='bar',
table='schedule'
)
schematable
also integrates with pandas
workflows like a charm, reducing the noise and friction involved with managing the arguments for their SQL related functions:
import pandas as pd
import datetime
df = pd.read_sql_table(schdl.table, schdl.engine, schld.schema) # neat - everything's in one place
df['event_name']
df['start_time'] > datetime.datetime.now()
df['extracted_time'] = datetime.datetime.now()
Working with multiple databases at the same time should be dead simple.
Eg. Lets say we wanted to create a new local test database on-the-fly with some data queried from our production database.
Here's the schematable
+ pandas
way:
import schematable as st
import pandas as pd
# extract dataset from production db
schdl = st.SchemaTable(
db_url='postgres://user:password@localhost:5432/foo',
schema='bar',
table='schedule'
)
# select everything from 2019
select_dataset_query = '''
select * from {schema_table}
where start_date between date('{from_date}') and date('{to_date}')
'''.format(
schema_table=schdl.st,
from_date='2019-01-01',
to_date='2019-12-31'
)
df = pd.read_sql(select_dataset_query, schdl.table, schdl.engine)
# load dataset into (new) test db
test_schdl = st.SchemaTable(
db_url='sqlite:///db/test-2019.sqlite',
table='schedule'
)
df.to_sql(test_schdl.table, test_schdl.engine, if_exists='replace', index=false)
Take a standard db URL and append a schema and table to the end - you get what we call a schematable URL, which can be parsed into a SchemaTable
instance:
from schematable import SchemaTable
schdl = SchemaTable.parse('postgres://user:password@localhost:5432/foo#bar.schedule')
print(schdl.db_url) # postgres://user:password@localhost:5432/foo
print(schdl.schema) # bar
print(schdl.table) # schedule
They're primarily handy for usecases involving serialization and deserialization of schematables:
# staging.env
SCHEDULE_SCHEMATABLE_URL=sqlite:///staging.db#bar.schedule
schdl = SchemaTable.parse(os.environ['SCHEDULE_SCHEMATABLE_URL'])
print(schdl.db_url) # sqlite:///staging.db
print(schdl.schema) # bar
print(schdl.table) # schedule
More specifically, schematable URLs are composed of a db_url
, table
, and schema
component where (just like the SchemaTable
constructor) only the table
component is required:
SchemaTable.parse('schedule')
SchemaTable.parse('bar.schedule')
SchemaTable.parse('sqlite:///staging.db#schedule')
SchemaTable.parse('postgres://user:password@localhost:5432/foo#bar.schedule')
Here are before-and-after snippets showing some code you won't have to write anymore using schematable
to do your SQL things:
Eg. Here's checking if a table exists:
import sqlalchemy as sa
schdl_db_url = 'sqlite://'
schdl_table = 'schedule'
schdl_engine = sa.create_engine(schdl_db_url)
if schdl_engine.has_table(schdl_table):
# do the thing
import schematable as st
schl = st.parse('schedule')
if schdl.engine.has_table(schdl.table, schdl.schema):
# do the thing
import schematable as st
schl = st.parse('schedule')
if schdl.exists():
# do the thing