Skip to content

jsampergonzalez/AD-ML

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains a software framework for reproducible machine learning experiments on automatic classification of Alzheimer's disease (AD) using multimodal MRI and PET data from three publicly available datasets ADNI, AIBL, OASIS. It is developed by the ARAMIS Lab.

In the directory Generic Version, there are examples of data conversion, preprocessing and classification tasks, that show how to use the different features of Clinica software. This code relies on the latest released version of Clinica.

If you are interested in accessing the repositories containing the code of the experiments and results of our papers that use Clinica, please change to the branch of the corresponding paper:

Citing this work

If you use this software, please cite:

J. Samper-Gonzalez, N. Burgos, S. Bottani, S. Fontanella, P. Lu, A. Marcoux, A. Routier, J. Guillon, M. Bacci, J. Wen, A. Bertrand, H. Bertin, M.-O. Habert, S. Durrleman, T. Evgeniou and O. Colliot, Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data. NeuroImage, 183:504–521, 2018 doi:10.1016/j.neuroimage.2018.08.042 - Paper in PDF - Supplementary material

In addition, if you use Diffusion MRI data or related code, please cite:

J. Wen, J. Samper-Gonzalez, S. Bottani, A. Routier, N. Burgos, T. Jacquemont, S. Fontanella, S. Durrleman, S. Epelbaum, A. Bertrand, and O. Colliot, Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer’s disease. Submitted for publication

Documentation

This code relies heavily on the Clinica software platform that you will need to install.

The documentation is available at: https://github.com/aramis-lab/AD-ML/wiki

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 69.4%
  • Jupyter Notebook 30.6%