- This is the official repository of NBsTem_Tm & NBsTem_Q, two deep learning models designed for thermostability prediction of nanobodies (VHH).
- You can also access NBsTem Webserver for thermostability prediction online.
Clone this repository and install the package locally:
$ git clone [email protected]:jourmore/NBsTem.git
$ cd NBsTem_local
$ pip install -r requirements.txt
python app.py -i in.fasta
python app.py -t QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS
*usage: python app.py [-h] [-i I] [-o O] [-t T] [-seed SEED] [-device DEVICE]
optional arguments:
-h, --help show this help message and exit
-i I Input path with fasta format. [Such as: ./in.fasta]
-o O Output file name when input is fasta format. [Default: "Output-NBsTem-[Year]-[Month]-[Day].csv"
-t T Input one sequecne with text format. [Default:
QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS]
-seed SEED Random seed for torch, numpy, os. [Default: 42]
-device DEVICE Device: cpu, cuda. [Default: auto]
- Example (Using default parameters and example sequences):
python app.py
- Terminal output message:
******************************************************************
** **
** NBsTem v.2025 Thermostability prediction for Nanobody/VHH. **
** **
** http://www.nbscal.online/ **
** [email protected] **
******************************************************************
== 1.Use seed: 42
== 2.Device: cuda
== 3.Loading antibody language model: AntiBERTy
== 5.Begin to predict: Tm, Qclass, Specie and Chain
** Calculating Specie and Chain [Fast]
** Calculating Tm:: 100%|█████████████████████████████████████████████████| 83/83 [00:03<00:00, 22.40it/s]
** Calculating Qclass:: 100%|█████████████████████████████████████████████| 83/83 [00:02<00:00, 33.12it/s]
== 6.Finish ! The results are shown below or you can check file [Tm83.csv]
ID Tm Qclass Specie Sequence
1 4W70 73.279999 4 Camel EVQLVESGGGLVQAGDSLRLSATASGRTFSRAVMGWFRQAPGKERE...
2 5SV3 69.769997 4 Camel EVQLVESGGGLVQAGDSLRLSCTASGRTLGDYGVAWFRQAPGKERE...
3 Nb4 63.790001 4 Camel QVQLVESGGGSVQAGGSLRLSCAASGLDIHSYCMTWFRQAPGKERE...
4 Nb5 68.080002 3 Camel QVQLVESGGGSVQAGGSLRLSCAASGSAISNLYMAWFRQAPGKERE...
5 Nb6 80.320000 3 Camel HVQLVESGGGSVQAGGSLRLSCEISLYIYSSYCMGWFRQAPGKERE...
.. ... ... ... ... ...
79 NB-AGT-2-L22A-I72V 67.870003 3 Camel QVQLVESGGGLVQAGGSLRASCAASGRTFSSYAMGWFRQAPGKERE...
80 NB-AGT-2-L22A-I72A 69.099998 3 Camel QVQLVESGGGLVQAGGSLRASCAASGRTFSSYAMGWFRQAPGKERE...
81 NB-extra 74.070000 4 Human EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIGWVRRAPGKGEE...
82 NB-extra-CA-CV 71.000000 4 Human EVQLVESGGGLVQPGGSLRLSAAASGFNIKDTYIGWVRRAPGKGEE...
83 NB-extra-CA-CA 71.019997 4 Human EVQLVESGGGLVQPGGSLRLSAAASGFNIKDTYIGWVRRAPGKGEE...
[83 rows x 5 columns]
-
NBsTem_Tm: A model for predicting the melting temperature (Tm) from experiments (nanoDSF, DSF, DSC and CD, etc.).
-
NBsTem_Q: A model for predicting a new theoretical indicator (Qclass) proposed by us, which is derived from molecular dynamics simulation.
@article{...,
title = {NBsTem: Complementary dual models inferred from experimental and theoretical indicators to realize reliable prediction for nanobody thermostability},
author = {Jourmore, ..., Xuemei-Pu},
journal = {Under submission},
year= {2025}
}