Skip to content

Commit

Permalink
Merge branch 'main' into main
Browse files Browse the repository at this point in the history
  • Loading branch information
john-p-ryan authored Jan 7, 2025
2 parents 90a7fd0 + 8599cfb commit 8f9e24a
Show file tree
Hide file tree
Showing 3 changed files with 80 additions and 19 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/build_and_test.yml
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
name: Build and test [Python 3.9, 3.10, 3.11]
name: Build and test [Python 3.10, 3.11]

on: [push, pull_request]

Expand All @@ -7,7 +7,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.9, "3.10", "3.11"]
python-version: ["3.10", "3.11"]

steps:
- name: Checkout
Expand Down
3 changes: 3 additions & 0 deletions iot/inverse_optimal_tax.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@ def df(self):
dict_out = {
"z": self.z,
"f": self.f,
"F": self.F,
"f_prime": self.f_prime,
"mtr": self.mtr,
"mtr_prime": self.mtr_prime,
Expand Down Expand Up @@ -354,6 +355,7 @@ def sw_weights(self):
)
integral = np.trapz(g_z * self.f, self.z)
g_z = g_z / integral

# use Lockwood and Weinzierl formula, which should be equivalent but using numerical differentiation
bracket_term = (
1
Expand All @@ -366,6 +368,7 @@ def sw_weights(self):
g_z_numerical = -(1 / self.f) * d_dz_bracket
integral = np.trapz(g_z_numerical * self.f, self.z)
g_z_numerical = g_z_numerical / integral

return g_z, g_z_numerical


Expand Down
92 changes: 75 additions & 17 deletions iot/iot_user.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,9 +104,9 @@ def __init__(
income_measure=income_measure,
weight_var=weight_var,
eti=eti,
bandwidth=bandwidth,
lower_bound=lower_bound,
upper_bound=upper_bound,
# bandwidth=bandwidth,
# lower_bound=lower_bound,
# upper_bound=upper_bound,
dist_type=dist_type,
kde_bw=kde_bw,
mtr_smoother=mtr_smoother,
Expand Down Expand Up @@ -202,39 +202,74 @@ def SaezFig2(self, DS2011=False, upper_bound=None):
)
return fig

def JJZFig4(self, policy="Current Law"):
def JJZFig4(self, policy="Current Law", var="g_z"):
"""
Function to plot a decomposition of the political weights, `g_z`
Args:
policy (str): policy to plot
var (str): variable to plot against income
Variable options are:
* 'g_z' for analytically derived weights
* 'g_z_numeric' for numerically derived weights
Returns:
fig (plotly.express figure): figure with the decomposition
"""
k = self.labels.index(policy)
df = self.iot[k].df()
if var == "g_z":
g_weights = df.g_z
else:
g_weights = df.g_z_numerical

# g1 with mtr_prime = 0
g1 = (
0
+ ((df.theta_z * self.iot[k].eti * df.mtr) / (1 - df.mtr))
1
+ +((df.theta_z * self.iot[k].eti * df.mtr) / (1 - df.mtr))
+ ((self.iot[k].eti * df.z * 0) / (1 - df.mtr) ** 2)
)
# g2 with theta_z = 0
g2 = (
0
+ ((0 * self.iot[k].eti * df.mtr) / (1 - df.mtr))
1
+ +((0 * self.iot[k].eti * df.mtr) / (1 - df.mtr))
+ ((self.iot[k].eti * df.z * df.mtr_prime) / (1 - df.mtr) ** 2)
)
integral = np.trapz(g1, df.z)
g1 = g1 / integral
integral = np.trapz(g2, df.z)
plot_df = pd.DataFrame(
{
self.income_measure: df.z,
"Overall weight": df.g_z,
"Tax Base Elasticity": df.g_z - g1,
"Nonconstant MTRs": df.g_z - g1 - g2,
"Overall weight": g_weights,
"Tax Base Elasticity": g1,
"Nonconstant MTRs": g2,
}
)
fig = go.Figure()
# add a line at y = 1
fig.add_trace(
go.Scatter(
x=plot_df[self.income_measure],
y=plot_df["Overall weight"],
fill=None,
x=[
plot_df[self.income_measure].min(),
plot_df[self.income_measure].max(),
],
y=[1, 1],
mode="lines",
name="Overall weight",
line=dict(color="black", width=1, dash="dash"),
showlegend=False,
)
)
# fig.add_trace(
# go.Scatter(
# x=plot_df[self.income_measure],
# y=plot_df["Nonconstant MTRs"],
# fill="tonexty", # fill area between trace1 and trace2
# # fill="tozeroy",
# mode="lines",
# name="Nonconstant MTRs",
# )
# )
fig.add_trace(
go.Scatter(
x=plot_df[self.income_measure],
Expand All @@ -247,12 +282,35 @@ def JJZFig4(self, policy="Current Law"):
fig.add_trace(
go.Scatter(
x=plot_df[self.income_measure],
y=plot_df["Nonconstant MTRs"],
fill="tonexty", # fill area between trace1 and trace2
y=plot_df["Overall weight"],
fill="tonexty",
mode="lines",
name="Nonconstant MTRs",
)
)
# add a line at y=0
fig.add_trace(
go.Scatter(
x=plot_df[self.income_measure],
y=plot_df["Overall weight"],
mode="lines",
line=dict(color="black", width=1, dash="solid"),
name="Overall weight",
showlegend=False,
)
)
# add a line at y=0
fig.add_trace(
go.Scatter(
x=[
plot_df[self.income_measure].min(),
plot_df[self.income_measure].max(),
],
y=[0, 0],
mode="lines",
line=dict(color="black", width=1, dash="dash"),
)
)
fig.update_layout(
xaxis_title=OUTPUT_LABELS[self.income_measure],
yaxis_title=r"$g_z$",
Expand Down

0 comments on commit 8f9e24a

Please sign in to comment.