Kálmán filter based ROS 2
node (geometry_msgs/PoseStamped
, sensor_msgs/Imu
)
IMU transformer is a dependency, it might be needed if the IMU is not in the center of gravity (COG)
sudo apt install ros-$ROS_DISTRO-imu-transformer
cd ~/ros2_ws/src
Caution
If you want the full compatiblity with our paper, please use release version 0.3.0
. Newer releases use modified paramters. Either clone this version:
git clone https://github.com/jkk-research/kalman_pos --branch v.0.3.0
Or clone the latest version:
git clone https://github.com/jkk-research/kalman_pos
cd ~/ros2_ws
colcon build --symlink-install --packages-select kalman_pos
The main node is kalman_pos_node
, also there is a vehicle_status_convert
node for converting the vehicle status message to the required format.
flowchart LR
A[ /imu<br/>sensor_msgs/Imu] --> F(kalman_pos)
B[ /current_pose<br/>geometry_msgs/PoseStamped] --> F
C[ /vehicle_status<br/>geometry_msgs/Twist] --> F
D[ /nova_fix<br/>sensor_msgs/NavSatFix] --> F
E[ /duro_status<br/>std_msgs/String] --> F
F --> G[ /estimated_pose_cog<br/>geometry_msgs/PoseStamped]
F --> H[ /estimated_pose_baselink<br/>geometry_msgs/PoseStamped]
F --> I[ /distance<br/>std_msgs/Float32]
F --> J[ /estimated_trav_dist_est_pos<br/>std_msgs/Float32]
F --> K[ /estimation_accuracy<br/>visualization_msgs/Marker]
V1(vehicle_status_convert <br> -optional-) -.-> C
V3[ /vehicle_speed <br/> std_msgs/Float32] --> V1
V4[ /vehicle_steering <br/> std_msgs/Float32] --> V1
classDef light fill:#34aec5,stroke:#152742,stroke-width:2px,color:#152742
classDef dark fill:#152742,stroke:#34aec5,stroke-width:2px,color:#34aec5
classDef white fill:#ffffff,stroke:#152742,stroke-width:2px,color:#152742
classDef red fill:#ef4638,stroke:#152742,stroke-width:2px,color:#fff
classDef dashed fill:#ef4638,stroke:#152742,stroke-width:3px,stroke-dasharray:5,5,color:#fff
class F red
class V1 dashed
class A,B,C,D,E,G,H,I,J,K,V3,V4 light
Don't forget to source before ROS commands.
source ~/ros2_ws/install/setup.bash
ros2 launch kalman_pos kalman_pos_node.launch.py
pose_topic
- type:
string
- default value:
gps/duro/current_pose
- description: the name of the GNSS position topic (subscriber, geometry_msgs::PoseStamped)
- type:
vehicle_status_topic
- type:
string
- default value:
vehicle_status
- description: the name of the vehicle status topic (subscriber, autoware_msgs::VehicleStatus)
- type:
nav_sat_fix_topic
- type:
string
- default value:
gps/nova/fix
- description: the name of the Novatel NavSatFix topic (relevant only for Novatel GNSS) (subscriber, sensor_msgs::NavSatFix)
- type:
imu_topic
- type:
string
- default value:
imu/data
- description: the name of the IMU data topic (subscriber,
sensor_msgs::Imu
)
- type:
est_cog_topic
- type:
string
- default value:
estimated_pose_cog
- description: the name of the estimated position topic (transformed into the CoG) (Publisher,
geometry_msgs::PoseStamped
)
- type:
est_trav_distance_odom_topic
- type:
string
- default value:
distance
- description: the name of the estimated traveled distance position topic (calculation is based on the odemetry) (
Publisher, std_msgs::Float32
)
- type:
est_trav_distance_est_pos_topic
- type:
string
- default value:
estimated_trav_dist_est_pos
- description: the name of the estimated traveled distance position topic (calculation is based on the estimated position) (Publisher,
std_msgs::Float32
)
- type:
est_baselink_topic
- type:
string
- default value: estimated_pose_baselink
- description: the name of the estimated position topic (transformed into the baselink) (Publisher, geometry_msgs::PoseStamped)
- type:
est_accuracy_topic
- type:
string
- default value: estimation_accuracy
- description: the name of the estimattion accuracy marker topic (Publisher, visualization_msgs::Marker)
- type:
loop_rate_hz
- type:
int
- default value:
60
- description: the ROS loop rate of the node (in Hz)
- type:
estimation_method
- type:
int
- default value:
8
- description: the estimation method
0
: Kinematic model with EKF and without GNSS position; initial GNSS based orientation estimation disabled1
: Kinematic + dynamic model without EKF and GNSS position; initial GNSS based orientation estimation disabled2
: Kinematic model without EKF and GNSS position; initial GNSS based orientation estimation enabled3
: Kinematic + dynamic model without EKF and GNSS position; initial GNSS based orientation estimation enabled4
: Currently not used5
: Kinematic model with EKF and without GNSS; initial GNSS based orientation estimation disabled6
: Kinematic + dynamic model with EKF and without GNSS position; initial GNSS based orientation estimation disabled (USE THIS AS DEFAULT FOR ESTIMATION WITHOUT GNSS)7
: Kinematic model with EKF and without GNSS position; initial GNSS based orientation estimation enabled8
: Kinematic + dynamic model with EKF and without GNSS position; initial GNSS based orientation estimation enabled9
: Currently used for debugging10
: Automatically switch between the different estimation methods
- type:
dynamic_time_calc
- type:
bool
- default value:
true
- description: true if the time difference is calculated between each step, false if fix value is used (1/lROSLoopRate_cl_hz)
- type:
kinematic_model_max_speed
- type:
double
- default value:
0.3
- description: the speed where the algorithm switch to the dynamic model from the kinematic model
- type:
do_not_wait_for_gnss_msgs
- type:
bool
- default value:
true
- description:
true
if the algrithm in not waiting for the first positon message (use this for the algorithms without GNSS position and orientation estimation)
- type:
msg_timeout
- type:
double
- default value:
2000
- description: timeout for vehicle status and IMU message, if these messages does not arrive until timeout then the estimation will stop [ms]
- type:
vehicle_param_c1
- type:
double
- default value:
3000
- description: front wheel cornering stiffness (for single track model) [N/rad]
- type:
vehicle_param_c2
- type:
double
- default value:
3000
- description: rear wheel cornering stiffness (for single track model) [N/rad]
- type:
vehicle_param_m
- type:
double
- default value:
180
- description: mass of the vehicle [kg]
- type:
vehicle_param_jz
- type:
double
- default value:
270
- description: moment of inertia (z axle) [kg*m2]
- type:
vehicle_param_l1
- type:
double
- default value:
0.324
- description: CoG distance from the front axle [m]
- type:
vehicle_param_l1
- type:
double
- default value:
0.976
- description: CoG distance from the rear axle [m]
- type:
vehicle_param_swr
- type:
double
- default value:
1.0
- description: Steering wheel ratio
- type:
Download: jkk-research.github.io/dataset
Direct download of zipped MCAPs: download zip (~15 MB)
Make sure you have unzip
(sudo apt-get install unzip
) and:
unzip jkkds02.zip
ros2 bag play nissan_zala_50_zeg_1_0.mcap
This example bag (mcap) file can be used with:
ros2 launch kalman_pos kalman_pos_nissan1.launch.py
If you use any of this code please consider citing the paper:
@Article{doi:10.1177/09544070241266281,
title = {Localization robustness improvement for an autonomous race car using multiple extended Kalman filters},
author = {Krisztián Enisz and István Szalay and Ernő Horváth},
journal = {Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering},
volume = {0},
url = {https://doi.org/10.1177/09544070241266281},
eprint = {https://doi.org/10.1177/09544070241266281},
doi = {10.1177/09544070241266281}
}