This is the Tensorflow source code of our paper
Shiliang Zheng, Rui Xia. Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention. https://arxiv.org/abs/1802.00892.
Meanwhile, we provide our implementations of some state-of-the-art ABSC models.
If you use this package, please cite our paper.
-
Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. Effective LSTMs for Target-Dependent Sentiment Classification with Long Short Term Memory. COLING 2016.
-
Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan Zhu. Attention-based LSTM for Aspect-level Sentiment Classification. EMNLP 2016.
-
Duyu Tang, Bing Qin, and Ting Liu. Aspect Level Sentiment Classification with Deep Memory Network. EMNLP 2016.
-
Meishan Zhang, Yue Zhang, and Duy-Tin Vo. Gated Neural Networks for Targeted Sentiment Analysis. AAAI 2016.
-
Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Interactive Attention Networks for Aspect-Level Sentiment Classification. IJCAI 2017.
-
Peng Chen, Zhongqian Sun, Lidong Bing, and Wei Yang. Recurrent Attention Network on Memory for Aspect Sentiment Analysis. EMNLP 2017.
-
Shiliang Zheng, Rui Xia. Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention. https://arxiv.org/abs/1802.00892.
.
├── README.md
├── model
│ ├── lstm.py Paper 1
│ ├── tc_lstm.py Paper 1
│ ├── td_lstm.py Paper 1
│ ├── at_lstm.py Paper 2
│ ├── dmn_lstm.py Paper 3
│ ├── ian.py Paper 5
│ ├── ram.py Paper 6
│ ├── lcr.py Paper 7
Usage of codes:
Usage: python model/lcr.py [options] [parameters]
Options:
--train_file_path
--test_file_path
--embedding_file_path
--learning_rate
--batch_size
--n_iter
--random_base
--l2_reg
--keep_prob1
--keep_prob2
Give the usage of lcr.py for example:
python model/lcr.py --train_file_path data/absa/laptop/laptop_2014_train.txt
--test_file_path data/absa/laptop/laptop_2014_test.txt
--embedding_file_path data/absa/laptop/laptop_word_embedding_42b.txt
--learning_rate 0.1
--batch_size 25
--n_iter 50
--random_base 0.1
--l2_reg 0.00001
--keep_prob1 0.5
--keep_prob2 0.5