DataChain is an open-source Python library for processing and curating unstructured data at scale.
π€ AI-Driven Data Curation: Use local ML models, LLM APIs calls to enrich your data.
π GenAI Dataset scale: Handle 10s of milions of files or file snippets.
π Python-friendly: Use strictly typed Pydantic objects instead of JSON.
To ensure efficiency, Datachain supports parallel processing, parallel data downloads, and out-of-memory computing. It excels at optimizing batch operations. While most GenAI tools focus on online applications and realtime, DataChain is designed for offline data processing, data curation and ETL.
The typical use cases are Computer Vision data curation, LLM analytics and validation.
$ pip install datachain
We will evaluate chatbot dialogs stored as text files in Google Cloud Storage - 50 files total in the example. These dialogs involve users looking for better wireless plans chatting with bot. Our goal is to identify successful dialogs.
The data used in the examples is publicly available. Please feel free to run this code.
First, we'll use a simple sentiment analysis model. Please install transformers.
pip install transformers
The code below downloads files the cloud, applies function is_positive_dialogue_ending() to each. All files with a positive sentiment are copied to local directory output/.
from transformers import pipeline
from datachain import DataChain, Column
classifier = pipeline("sentiment-analysis", device="cpu",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
def is_positive_dialogue_ending(file) -> bool:
dialogue_ending = file.read()[-512:]
return classifier(dialogue_ending)[0]["label"] == "POSITIVE"
chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/",
object_name="file", type="text")
.settings(parallel=8, cache=True)
.map(is_positive=is_positive_dialogue_ending)
.save("file_response")
)
positive_chain = chain.filter(Column("is_positive") == True)
positive_chain.export_files("./output1")
print(f"{positive_chain.count()} files were exported")
13 files were exported
$ ls output/datachain-demo/chatbot-KiT/
15.txt 20.txt 24.txt 27.txt 28.txt 29.txt 33.txt 37.txt 38.txt 43.txt ...
$ ls output/datachain-demo/chatbot-KiT/ | wc -l
13
Finding good dialogs using an LLM can be more efficient. In this example, we use Mistral with a free API. Please install the package and get a free Mistral API key at https://console.mistral.ai
$ pip install mistralai
$ export MISTRAL_API_KEY=_your_key_
Below is a similar code example, but this time using an LLM to evaluate the dialogs. Note, only 4 threads were used in this example parallel=4 due to a limitation of the free LLM service.
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from datachain import File, DataChain, Column
PROMPT = "Was this dialog successful? Answer in a single word: Success or Failure."
def eval_dialogue(file: File) -> bool:
client = MistralClient()
response = client.chat(
model="open-mixtral-8x22b",
messages=[ChatMessage(role="system", content=PROMPT),
ChatMessage(role="user", content=file.read())])
result = response.choices[0].message.content
return result.lower().startswith("success")
chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/", object_name="file")
.settings(parallel=4, cache=True)
.map(is_success=eval_dialogue)
.save("mistral_files")
)
successful_chain = chain.filter(Column("is_success") == True)
successful_chain.export_files("./output_mistral")
print(f"{successful_chain.count()} files were exported")
With the current prompt, we found 31 files considered successful dialogs:
$ ls output_mistral/datachain-demo/chatbot-KiT/
1.txt 15.txt 18.txt 2.txt 22.txt 25.txt 28.txt 33.txt 37.txt 4.txt 41.txt ...
$ ls output_mistral/datachain-demo/chatbot-KiT/ | wc -l
31
LLM responses contain valuable information for analytics, such as tokens used and the model. Preserving this information can be beneficial.
Instead of extracting this information from the Mistral data structure (class ChatCompletionResponse), we serialize the entire Python object to the internal DB.
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage, ChatCompletionResponse
from datachain import File, DataChain, Column
PROMPT = "Was this dialog successful? Answer in a single word: Success or Failure."
def eval_dialog(file: File) -> ChatCompletionResponse:
client = MistralClient()
return client.chat(
model="open-mixtral-8x22b",
messages=[ChatMessage(role="system", content=PROMPT),
ChatMessage(role="user", content=file.read())])
chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/", object_name="file")
.settings(parallel=4, cache=True)
.map(response=eval_dialog)
.map(status=lambda response: response.choices[0].message.content.lower()[:7])
.save("response")
)
chain.select("file.name", "status", "response.usage").show(5)
success_rate = chain.filter(Column("status") == "success").count() / chain.count()
print(f"{100*success_rate:.1f}% dialogs were successful")
Output:
file status response response response
name usage usage usage
prompt_tokens total_tokens completion_tokens
0 1.txt success 547 548 1
1 10.txt failure 3576 3578 2
2 11.txt failure 626 628 2
3 12.txt failure 1144 1182 38
4 13.txt success 1100 1101 1
[Limited by 5 rows]
64.0% dialogs were successful
In the previous examples, a few dataset were saved in the embedded database (SQLite in directory .datachain). These datasets are versioned, and can be accessed using DataChain.from_dataset("dataset_name").
chain = DataChain.from_dataset("response")
# Iterating one-by-one: out of memory
for file, response in chain.limit(5).collect("file", "response"):
# You work with Python objects
assert isinstance(response, ChatCompletionResponse)
status = response.choices[0].message.content[:7]
tokens = response.usage.total_tokens
print(f"{file.get_uri()}: {status}, file size: {file.size}, tokens: {tokens}")
Output:
gs://datachain-demo/chatbot-KiT/1.txt: Success, file size: 1776, tokens: 548
gs://datachain-demo/chatbot-KiT/10.txt: Failure, file size: 11576, tokens: 3578
gs://datachain-demo/chatbot-KiT/11.txt: Failure, file size: 2045, tokens: 628
gs://datachain-demo/chatbot-KiT/12.txt: Failure, file size: 3833, tokens: 1207
gs://datachain-demo/chatbot-KiT/13.txt: Success, file size: 3657, tokens: 1101
Some operations can be efficiently run inside the DB without deserializing Python objects. Let's calculate the cost of using LLM APIs in a vectorized way. Mistral calls cost $2 per 1M input tokens and $6 per 1M output tokens:
chain = DataChain.from_dataset("mistral_dataset")
cost = chain.sum("response.usage.prompt_tokens")*0.000002 \
+ chain.sum("response.usage.completion_tokens")*0.000006
print(f"Spent ${cost:.2f} on {chain.count()} calls")
Output:
Spent $0.08 on 50 calls
Chain results can be exported or passed directly to PyTorch dataloader. For example, if we are interested in passing image and a label based on file name suffix, the following code will do it:
from torch.utils.data import DataLoader
from transformers import CLIPProcessor
from datachain import C, DataChain
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
chain = (
DataChain.from_storage("gs://datachain-demo/dogs-and-cats/", type="image")
.map(label=lambda name: name.split(".")[0], params=["file.name"])
.select("file", "label").to_pytorch(
transform=processor.image_processor,
tokenizer=processor.tokenizer,
)
)
loader = DataLoader(chain, batch_size=1)
- Getting Started
- Multimodal (try in Colab)
Contributions are very welcome. To learn more, see the Contributor Guide.
- Docs
- File an issue if you encounter any problems
- Discord Chat