Skip to content

semmcci: Monte Carlo Confidence Intervals in Structural Equation Modeling

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

jeksterslab/semmcci

Repository files navigation

semmcci

Ivan Jacob Agaloos Pesigan 2024-10-22

CRAN Status R-Universe Status DOI Make Project R-CMD-check R Package Test Coverage Lint R Package Package Website (GitHub Pages) Compile LaTeX Shell Check pages-build-deployment codecov

Installation

You can install the CRAN release of semmcci with:

install.packages("semmcci")

You can install the development version of semmcci from GitHub with:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/semmcci")

Description

In the Monte Carlo method, a sampling distribution of parameter estimates is generated from the multivariate normal distribution using the parameter estimates and the sampling variance-covariance matrix. Confidence intervals for defined parameters are generated by obtaining percentiles corresponding to 100(1 - α)% from the generated sampling distribution, where α is the significance level.

Monte Carlo confidence intervals for free and defined parameters in models fitted in the structural equation modeling package lavaan can be generated using the semmcci package. The package has three main functions, namely, MC(), MCMI(), and MCStd(). The output of lavaan is passed as the first argument to the MC() function or the MCMI() function to generate Monte Carlo confidence intervals. Monte Carlo confidence intervals for the standardized estimates can also be generated by passing the output of the MC() function or the MCMI() function to the MCStd() function. A description of the package and code examples are presented in Pesigan and Cheung (2023: https://doi.org/10.3758/s13428-023-02114-4).

Example

A common application of the Monte Carlo method is to generate confidence intervals for the indirect effect. In the simple mediation model, variable X has an effect on variable Y, through a mediating variable M. This mediating or indirect effect is a product of path coefficients from the fitted model.

library(semmcci)
library(lavaan)

Data

summary(df)
#>        X                  M                  Y           
#>  Min.   :-2.76266   Min.   :-3.21655   Min.   :-3.04206  
#>  1st Qu.:-0.74750   1st Qu.:-0.66996   1st Qu.:-0.62765  
#>  Median :-0.06346   Median :-0.05311   Median : 0.01924  
#>  Mean   :-0.05342   Mean   :-0.03643   Mean   : 0.02026  
#>  3rd Qu.: 0.60882   3rd Qu.: 0.66178   3rd Qu.: 0.67857  
#>  Max.   : 3.06685   Max.   : 3.09347   Max.   : 2.84476  
#>  NA's   :100        NA's   :100        NA's   :100

Model Specification

The indirect effect is defined by the product of the slopes of paths X to M labeled as a and M to Y labeled as b. In this example, we are interested in the confidence intervals of indirect defined as the product of a and b using the := operator in the lavaan model syntax.

model <- "
  Y ~ cp * X + b * M
  M ~ a * X
  X ~~ X
  indirect := a * b
  direct := cp
  total := cp + (a * b)
"

Monte Carlo Confidence Intervals

We can now fit the model using the sem() function from lavaan. We use full-information maximum likelihood to deal with missing values.

fit <- sem(data = df, model = model, missing = "fiml")

The fit lavaan object can then be passed to the MC() function to generate Monte Carlo confidence intervals.

mc <- MC(fit, R = 20000L, alpha = 0.05)
mc
#> Monte Carlo Confidence Intervals
#>              est     se     R    2.5%  97.5%
#> cp        0.2833 0.0309 20000  0.2228 0.3444
#> b         0.4577 0.0298 20000  0.3983 0.5157
#> a         0.4891 0.0306 20000  0.4293 0.5494
#> X~~X      0.9396 0.0437 20000  0.8532 1.0259
#> Y~~Y      0.5328 0.0260 20000  0.4812 0.5829
#> M~~M      0.7392 0.0357 20000  0.6702 0.8099
#> Y~1       0.0507 0.0247 20000  0.0023 0.0991
#> M~1      -0.0166 0.0285 20000 -0.0729 0.0390
#> X~1      -0.0484 0.0317 20000 -0.1112 0.0133
#> indirect  0.2238 0.0201 20000  0.1860 0.2641
#> direct    0.2833 0.0309 20000  0.2228 0.3444
#> total     0.5072 0.0294 20000  0.4501 0.5655

Monte Carlo Confidence Intervals - Multiple Imputation

The MCMI() function can be used to handle missing values using multiple imputation. The MCMI() accepts the output of mice::mice(), Amelia::amelia(), or a list of multiply imputed data sets. In this example, we impute multivariate missing data under the normal model.

mi <- mice::mice(
  df,
  method = "norm",
  m = 100,
  print = FALSE,
  seed = 42
)

We fit the model using lavaan using the default listwise deletion.

fit <- sem(data = df, model = model)

The fit lavaan object and mi object can then be passed to the MCMI() function to generate Monte Carlo confidence intervals.

mcmi <- MCMI(fit, mi = mi, R = 20000L, alpha = 0.05, seed = 42)
mcmi
#> Monte Carlo Confidence Intervals (Multiple Imputation Estimates)
#>             est     se     R   2.5%  97.5%
#> cp       0.2810 0.0317 20000 0.2189 0.3432
#> b        0.4576 0.0304 20000 0.3983 0.5172
#> a        0.4903 0.0307 20000 0.4299 0.5508
#> X~~X     0.9413 0.0443 20000 0.8540 1.0276
#> Y~~Y     0.5316 0.0262 20000 0.4805 0.5832
#> M~~M     0.7403 0.0354 20000 0.6699 0.8094
#> indirect 0.2244 0.0207 20000 0.1848 0.2655
#> direct   0.2810 0.0317 20000 0.2189 0.3432
#> total    0.5054 0.0293 20000 0.4482 0.5629

Standardized Monte Carlo Confidence Intervals

Standardized Monte Carlo Confidence intervals can be generated by passing the result of the MC() function or the MCMI() function to MCStd().

MCStd(mc, alpha = 0.05)
#> Standardized Monte Carlo Confidence Intervals
#>              est     se     R   2.5%  97.5%
#> cp        0.2849 0.0304 20000 0.2253 0.3446
#> b         0.4661 0.0282 20000 0.4095 0.5211
#> a         0.4829 0.0265 20000 0.4300 0.5342
#> X~~X      1.0000 0.0000 20000 1.0000 1.0000
#> Y~~Y      0.5733 0.0260 20000 0.5213 0.6236
#> M~~M      0.7668 0.0255 20000 0.7146 0.8151
#> indirect  0.0526 0.0185 20000 0.1893 0.2621
#> direct   -0.0169 0.0304 20000 0.2253 0.3446
#> total    -0.0499 0.0256 20000 0.4588 0.5589
MCStd(mcmi, alpha = 0.05)
#> Standardized Monte Carlo Confidence Intervals
#>             est     se     R   2.5%  97.5%
#> cp       0.2793 0.0315 20000 0.2209 0.3444
#> b        0.4706 0.0291 20000 0.4097 0.5235
#> a        0.4593 0.0268 20000 0.4300 0.5349
#> X~~X     1.0000 0.0000 20000 1.0000 1.0000
#> Y~~Y     0.5798 0.0259 20000 0.5226 0.6240
#> M~~M     0.7891 0.0258 20000 0.7139 0.8151
#> indirect 0.2161 0.0191 20000 0.1888 0.2638
#> direct   0.2793 0.0315 20000 0.2209 0.3444
#> total    0.4954 0.0257 20000 0.4567 0.5581

Documentation

See GitHub Pages for package documentation.

Citation

To cite semmcci in publications, please cite Pesigan & Cheung (2023).

References

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128. https://doi.org/10.1207/s15327906mbr3901_4

Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods, 56(3), 1678–1696. https://doi.org/10.3758/s13428-023-02114-4

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. https://doi.org/10.1080/19312458.2012.679848

Tofighi, D., & Kelley, K. (2019). Indirect effects in sequential mediation models: Evaluating methods for hypothesis testing and confidence interval formation. Multivariate Behavioral Research, 55(2), 188–210. https://doi.org/10.1080/00273171.2019.1618545

Tofighi, D., & MacKinnon, D. P. (2015). Monte Carlo confidence intervals for complex functions of indirect effects. Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 194–205. https://doi.org/10.1080/10705511.2015.1057284