A dataset generator for validating computer vision models for classification, detection and segmentation before testing it out with real world datasets
usage: run.py [-h] [--save_dir SAVE_DIR]
[--image_size IMAGE_SIZE [IMAGE_SIZE ...]]
[--num_images NUM_IMAGES] [--shapes SHAPES [SHAPES ...]]
[--shape_color SHAPE_COLOR] [--shuffle_color SHUFFLE_COLOR]
[--task_type TASK_TYPE]
optional arguments:
-h, --help show this help message and exit
--save_dir SAVE_DIR path to where you want to save the dataset
--image_size IMAGE_SIZE [IMAGE_SIZE ...]
size of the image
--num_images NUM_IMAGES
number of images for your dataset
--shapes SHAPES [SHAPES ...]
shapes that you require in your dataset. Available:
['rect', 'circle']
--shape_color SHAPE_COLOR
specify a particular color for all the shapes
--shuffle_color SHUFFLE_COLOR
shuffle colors for the shapes
--task_type TASK_TYPE
specify type of task. Available: ['recognition',
'detection', 'segmentation']
Generate a dataset of circles and rectangles with bounding boxes
python run.py --save_dir /tmp/ --image_size 500 500 --num_images 5 --shapes circle rect
Or you can run simply with defualt config
python run.py --save_dir /tmp/
Generate a dataset for classificatoin/recognition
python run.py --task_type recognition --save_dir /tmp/
Visualize the generated dataset
python visualize.py --dataset_dir /tmp/dataset