-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'devel' of https://github.com/jcosborn/qex into devel
- Loading branch information
Showing
4 changed files
with
569 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
## cubic spline and related routines | ||
|
||
import std/algorithm | ||
import base | ||
|
||
proc estimateDerivative*[N:static[int],T](dx,dy:array[N,T]):T = | ||
## estimate the derivative given a list of dx and dy, using Taylor series | ||
## dx and dy must be the difference away from a single point. | ||
when N==1: | ||
return dy[0]/dx[0] | ||
elif N==2: | ||
let h10 = dx[1]-dx[0] | ||
return dy[0]*dx[1]/(dx[0]*h10) - dx[0]*dy[1]/(h10*dx[1]) | ||
elif N==3: | ||
let | ||
h10 = dx[1]-dx[0] | ||
h02 = dx[0]-dx[2] | ||
h21 = dx[2]-dx[1] | ||
a = dy[0]*dx[1]*dx[2]/(dx[0]*h10*h02) | ||
b = dx[0]*dy[1]*dx[2]/(dx[1]*h10*h21) | ||
c = dx[0]*dx[1]*dy[2]/(dx[2]*h02*h21) | ||
return -(a+b+c) | ||
else: | ||
error("estimateDerivative: Unimplemented for N = " & $N) | ||
|
||
type CSpline*[T] = object | ||
x: seq[T] | ||
ys: seq[array[2,T]] ## y and computed second derivatives of y | ||
|
||
type | ||
CSplineBoundDyKind = enum | ||
CSBEstimateDy, CSBZeroD2y, CSBSetDy | ||
CSplineBoundDy = object | ||
case kind: CSplineBoundDyKind | ||
of CSBEstimateDy, CSBZeroD2y: | ||
discard | ||
of CSBSetDy: | ||
dy: float | ||
CSplineBounds = object | ||
lo,hi: CSplineBoundDy | ||
|
||
const CSplineBoundEstimateDy* = CSplineBoundDy(kind:CSBEstimateDy) | ||
const CSplineBoundZeroD2y* = CSplineBoundDy(kind:CSBZeroD2y) | ||
converter toCSplineBoundDy*(dy:float):CSplineBoundDy = CSplineBoundDy(kind:CSBSetDy,dy:dy) | ||
|
||
proc csplineBounds*(lo=CSplineBoundEstimateDy, hi=CSplineBoundEstimateDy):CSplineBounds = | ||
CSplineBounds(lo:lo, hi:hi) | ||
|
||
proc newCSpline*[T](x,y:openarray[T], bounds=csplineBounds()):CSpline[T] = | ||
let n = x.len | ||
if y.len != n: | ||
qexError "different length in x and y: ",n," != ",y.len | ||
var r = CSpline[T](x:newseq[T](n), ys:newseq[array[2,T]](n)) | ||
for i in 0..<n: | ||
r.ys[i] = [y[i], x[i]] | ||
r.ys.sort do (a,b:array[2,T]) -> int: | ||
cmp(a[1], b[1]) # sort by x | ||
for i in 0..<n: | ||
r.x[i] = r.ys[i][1] # copy sorted x | ||
|
||
template x(i:int):auto = r.x[i] | ||
template y(i:int):auto = r.ys[i][0] | ||
template d2y(i:int):auto = r.ys[i][1] | ||
var g = newseq[T](n-1) | ||
|
||
var beta:T | ||
|
||
if bounds.lo.kind==CSBZeroD2y: | ||
d2y(0) = T(0) | ||
g[0] = T(0) | ||
else: | ||
let | ||
dy = | ||
if bounds.lo.kind==CSBEstimateDy: | ||
if n>3: estimateDerivative([x(1)-x(0), x(2)-x(0), x(3)-x(0)], [y(1)-y(0), y(2)-y(0), y(3)-y(0)]) | ||
elif n==3: estimateDerivative([x(1)-x(0), x(2)-x(0)], [y(1)-y(0), y(2)-y(0)]) | ||
elif n==2: estimateDerivative([x(1)-x(0)], [y(1)-y(0)]) | ||
else: T(0.0) | ||
else: | ||
bounds.lo.dy | ||
d = y(1)-y(0) | ||
h = x(1)-x(0) | ||
d2y(0) = T(3.0)*(d/h-dy)/h | ||
g[0] = T(0.5) | ||
|
||
# solve the tridiagonal system | ||
for j in 1..<n-1: | ||
let | ||
xm = x(j-1) | ||
xj = x(j) | ||
xp = x(j+1) | ||
ym = y(j-1) | ||
yj = y(j) | ||
yp = y(j+1) | ||
hm = xj-xm | ||
hj = xp-xj | ||
hjm = hj/hm | ||
dhm = (yj-ym)/hm | ||
dhj = (yp-yj)/hj | ||
bj = T(2.0)*(T(1.0)+hjm) | ||
beta = bj - g[j-1] | ||
d2y(j) = (T(6.0)*(dhj-dhm)/hm-d2y(j-1))/beta | ||
g[j] = hjm/beta | ||
#echo "# iter j = ",j | ||
#echo "(h",j-1,"+h",j,")/3 ",(xp-xm)/3.0 | ||
#echo "d",j-1,"/h",j-1," ",dhm," d",j,"/h",j," ",dhj | ||
#echo "2(1+h",j,"/h",j-1,") ",bj | ||
#echo "h",j,"/h",j-1," ",hjm | ||
#echo "6(d",j,"/h",j,"-d",j-1,"/h",j-1,")/h",j-1," ",T(6.0)*(dhj-dhm)/hm | ||
#echo "beta ",beta," g",j," ",g[j] | ||
#echo "forward: d2y(",j,") ",d2y(j) | ||
|
||
# last row | ||
if bounds.hi.kind==CSBZeroD2y: | ||
d2y(n-1) = T(0) | ||
else: | ||
let | ||
dy = | ||
if bounds.hi.kind==CSBEstimateDy: | ||
if n>3: estimateDerivative([x(n-2)-x(n-1), x(n-3)-x(n-1), x(n-4)-x(n-1)], [y(n-2)-y(n-1), y(n-3)-y(n-1), y(n-4)-y(n-1)]) | ||
elif n==3: estimateDerivative([x(n-2)-x(n-1), x(n-3)-x(n-1)], [y(n-2)-y(n-1), y(n-3)-y(n-1)]) | ||
elif n==2: estimateDerivative([x(n-2)-x(n-1)], [y(n-2)-y(n-1)]) | ||
else: T(0.0) | ||
else: | ||
bounds.hi.dy | ||
d = y(n-1)-y(n-2) | ||
h = x(n-1)-x(n-2) | ||
d2y(n-1) = (T(6.0)*(dy-d/h)/h-d2y(n-2))/(T(2.0)-g[n-2]) | ||
|
||
# back substitute | ||
for j in countdown(n-2,0): | ||
d2y(j) -= g[j]*d2y(j+1) | ||
#echo "back: d2y(",j,") ",d2y(j) | ||
|
||
return r | ||
|
||
func bisect*[T](xs:openarray[T], x:T): int = | ||
## assuming ascending xs | ||
## no boundary check | ||
var | ||
tot = xs.len | ||
mid = tot div 2 | ||
while tot>1: | ||
if x<xs[mid]: | ||
tot = mid | ||
mid -= tot div 2 | ||
else: | ||
tot -= mid | ||
mid += tot div 2 | ||
mid | ||
|
||
func interpolate*[T](csp:CSpline[T], x:T):T = | ||
let | ||
i = csp.x.bisect x | ||
x0 = csp.x[i] | ||
x1 = csp.x[i+1] | ||
y0 = csp.ys[i][0] | ||
d2y0 = csp.ys[i][1] | ||
y1 = csp.ys[i+1][0] | ||
d2y1 = csp.ys[i+1][1] | ||
h = x1-x0 | ||
a = (x1-x)/h | ||
b = (x-x0)/h | ||
c = (a*a*a-a)*h*h/T(6.0) | ||
d = (b*b*b-b)*h*h/T(6.0) | ||
a*y0 + b*y1 + c*d2y0 + d*d2y1 | ||
|
||
func interpolateDy*[T](csp:CSpline[T], x:T):T = | ||
let | ||
i = csp.x.bisect x | ||
x0 = csp.x[i] | ||
x1 = csp.x[i+1] | ||
y0 = csp.ys[i][0] | ||
d2y0 = csp.ys[i][1] | ||
y1 = csp.ys[i+1][0] | ||
d2y1 = csp.ys[i+1][1] | ||
h = x1-x0 | ||
a = (x1-x)/h | ||
b = (x-x0)/h | ||
c = (a*a*a-a)*h*h/T(6.0) | ||
d = (b*b*b-b)*h*h/T(6.0) | ||
(y1-y0)/h - (T(3.0)*a*a-T(1.0))*h*d2y0/T(6.0) + (T(3.0)*b*b-T(1.0))*h*d2y1/T(6.0) | ||
|
||
func interpolateD2y*[T](csp:CSpline[T], x:T):T = | ||
let | ||
i = csp.x.bisect x | ||
x0 = csp.x[i] | ||
x1 = csp.x[i+1] | ||
y0 = csp.ys[i][0] | ||
d2y0 = csp.ys[i][1] | ||
y1 = csp.ys[i+1][0] | ||
d2y1 = csp.ys[i+1][1] | ||
h = x1-x0 | ||
a = (x1-x)/h | ||
b = (x-x0)/h | ||
c = (a*a*a-a)*h*h/T(6.0) | ||
d = (b*b*b-b)*h*h/T(6.0) | ||
a*d2y0 + b*d2y1 | ||
|
||
when isMainModule: | ||
import qex | ||
import utils/test | ||
|
||
proc fun0(x:float):auto = | ||
return (1.0+x, 1.0, 0.0, 0.0) | ||
proc fun1(x:float):auto = | ||
return ((1.0+x)*(2.0-x), 1.0-2.0*x, -2.0, 0.0) | ||
proc fun2(x:float):auto = | ||
return ((1.0+x)*(2.0-x)*(1.0-x), (3.0*x-4.0)*x-1.0, 6.0*x-4.0, 6.0) | ||
|
||
proc testEstD(test:QEXTest, ord:int, dx,dy:array[3,float], actual:float) = | ||
let d = [estimateDerivative([dx[0]],[dy[0]]), | ||
estimateDerivative([dx[0],dx[1]],[dy[0],dy[1]]), | ||
estimateDerivative(dx,dy)] | ||
let test = test.newTest("estimate derivative") | ||
for o in ord..3: | ||
test.assertAlmostEqual(d[o-1], actual) | ||
|
||
proc testCSp(test:QEXTest, spline:CSPline[float], ord:int, f:proc, checkValues=true) = | ||
let n = spline.x.len | ||
for i in 0..<n: | ||
test.logInfo i," x: ",spline.x[i]," y: ",spline.ys[i][0]," y'': ",spline.ys[i][1] | ||
let fx = f(spline.x[i]) | ||
test.logInfo " exact y': ",fx[1]," y'': ",fx[2]," y''': ",fx[3] | ||
#if i<n-1: | ||
# let h = spline.x[i+1]-spline.x[i] | ||
# let d = spline.ys[i+1][0]-spline.ys[i][0] | ||
# echo " y'",i," ",d/h+h*spline.ys[i][1]/(-3.0)+h*spline.ys[i+1][1]/(-6.0) | ||
# echo " y'",i+1," ",d/h+h*spline.ys[i][1]/6.0+h*spline.ys[i+1][1]/3.0 | ||
let testcontdy = test.newTest("Continuous Derivatives", hidden=1) | ||
for i in 1..<n-1: | ||
let | ||
hm = spline.x[i]-spline.x[i-1] | ||
hp = spline.x[i+1]-spline.x[i] | ||
dym = (spline.ys[i][0]-spline.ys[i-1][0])/hm + hm*spline.ys[i-1][1]/6.0 + hm*spline.ys[i][1]/3.0 | ||
dyp = (spline.ys[i+1][0]-spline.ys[i][0])/hp + hp*spline.ys[i][1]/(-3.0) + hp*spline.ys[i+1][1]/(-6.0) | ||
testcontdy.assertAlmostEqual(dyp, dym) | ||
if checkValues: | ||
for x in [spline.x[0], spline.x[n-1], spline.x[0]+0.05, 0.0, spline.x[n-1]-0.05]: | ||
let | ||
testp = test.newTest("x=" & $x, hidden=1) | ||
yi = spline.interpolate(x) | ||
dyi = spline.interpolateDy(x) | ||
d2yi = spline.interpolateD2y(x) | ||
(y, dy, d2y, d3y) = f(x) | ||
if ord<4: | ||
testp.newTest("y", hidden=1).assertAlmostEqual(yi, y) | ||
testp.newTest("dy", hidden=1).assertAlmostEqual(dyi, dy) | ||
testp.newTest("d2y", hidden=1).assertAlmostEqual(d2yi, d2y) | ||
|
||
proc run(test:QEXTest, ord:int, f:proc) = | ||
let test = test.newTest("polynomial degree " & $ord) | ||
let | ||
n = 7 | ||
m = 4 | ||
var | ||
xs = newseq[float](n+m) | ||
ys = newseq[float](n+m) | ||
dys = newseq[array[3,float]](n+m) | ||
for i in 0..<n: | ||
let x = float(i)*5.0/float(n-1) - 2.0 | ||
let fx = f(x) | ||
xs[i] = x | ||
ys[i] = fx[0] | ||
dys[i][0] = fx[1] | ||
dys[i][1] = fx[2] | ||
dys[i][2] = fx[3] | ||
for i in 0..<m: | ||
let x = float(i)*5.0/float(m-1) - 1.9 | ||
let fx = f(x) | ||
xs[n+i] = x | ||
ys[n+i] = fx[0] | ||
dys[n+i][0] = fx[1] | ||
dys[n+i][1] = fx[2] | ||
dys[n+i][2] = fx[3] | ||
testEstD(test, ord, [xs[3]-xs[2],xs[4]-xs[2],xs[5]-xs[2]], [ys[3]-ys[2],ys[4]-ys[2],ys[5]-ys[2]], dys[2][0]) | ||
testCSp( | ||
test.newTest("cspline default (est. 1st deriv.)"), | ||
newCSpline(xs,ys), | ||
ord, f) | ||
testCSp( | ||
test.newTest("cspline set 1st deriv. bounds"), | ||
newCSpline(xs,ys,csplineBounds(dys[0][0],dys[^1][0])), | ||
ord, f) | ||
testCSp( | ||
test.newTest("cspline natural (zero 2nd deriv.)"), | ||
newCSpline(xs,ys,csplineBounds(CSplineBoundZeroD2y,CSplineBoundZeroD2y)), | ||
ord, f, checkValues=false) | ||
|
||
qexInit() | ||
let thetest = newQEXTest("CSpline") | ||
thetest.run(1,fun0) | ||
thetest.run(2,fun1) | ||
thetest.run(3,fun2) | ||
thetest.qexFinalize |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.