Skip to content

its-Kumar/Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine-Learning

Basic Machine Learning Tutorial using Python and R.

Supervised Learning

Part 1 - Data Preprocessing

  1. categorical_data
  2. data_preprocessing

Part 2 - Regression

  1. Simple Linear Regression
  2. Multiple Linear Regression
  3. Polynomial Regression
  4. SVR
  5. Decision Tree Regression
  6. Random Forest Regression
  7. Regression Template

Part 3 - Classification

  1. Logistic Regression
  2. KNN
  3. SVM
  4. Kernel - SVM
  5. Naive Bayes
  6. Decision Tree Classification
  7. Random Forest Classification
  8. Classification Template

Un-supervised Learning

Part 4 - Clustering

  1. K-means Clustering
  2. Hierarchical Clustering

Part 5 - Association Rule Learning

  1. Apriori
  2. Eclat

Reinforcement Learning

Part 6 - Reinforcement Learning

  1. Upper Confidence Bound (UCB)
  2. Thompson Sampling

Deep Learning

Part 7 - Natural Language Processing

  1. NPL
  2. NPL using google's BERT model

Part 8 - Deep Learning

  1. Artificial Neural Network (ANN)
  2. Convolution Neural Network (CNN)

Part 9 - Dimensionality Reduction

  1. Principle Component Analysis (PCA)
  2. Linear Discriminant Analysis (LDA)
  3. Kernel-PCA

Part 10 - Model Selection & Boosting

  1. Comparing performance of regression models
  2. Comparing performance of classification models
  3. k-fold CrossValidation
  4. Grid Search
  5. XG Boost
  6. CatBoost