Basic Machine Learning Tutorial using Python and R.
- categorical_data
- data_preprocessing
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- SVR
- Decision Tree Regression
- Random Forest Regression
- Regression Template
- Logistic Regression
- KNN
- SVM
- Kernel - SVM
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
- Classification Template
- K-means Clustering
- Hierarchical Clustering
- Apriori
- Eclat
- Upper Confidence Bound (UCB)
- Thompson Sampling
- NPL
- NPL using google's BERT model
- Artificial Neural Network (ANN)
- Convolution Neural Network (CNN)
- Principle Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Kernel-PCA
- Comparing performance of regression models
- Comparing performance of classification models
- k-fold CrossValidation
- Grid Search
- XG Boost
- CatBoost