Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize UDF with parallel execution #713

Merged
merged 6 commits into from
Dec 26, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion src/datachain/lib/udf.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,6 @@ def run(
udf_fields: "Sequence[str]",
udf_inputs: "Iterable[RowsOutput]",
catalog: "Catalog",
is_generator: bool,
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not used anywhere

cache: bool,
download_cb: Callback = DEFAULT_CALLBACK,
processed_cb: Callback = DEFAULT_CALLBACK,
Expand Down
39 changes: 33 additions & 6 deletions src/datachain/query/batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

from datachain.data_storage.schema import PARTITION_COLUMN_ID
from datachain.data_storage.warehouse import SELECT_BATCH_SIZE
from datachain.query.utils import get_query_column, get_query_id_column

if TYPE_CHECKING:
from sqlalchemy import Select
Expand All @@ -23,11 +24,14 @@
class BatchingStrategy(ABC):
"""BatchingStrategy provides means of batching UDF executions."""

is_batching: bool

@abstractmethod
def __call__(
self,
execute: Callable[..., Generator[Sequence, None, None]],
execute: Callable,
query: "Select",
ids_only: bool = False,
) -> Generator[RowsOutput, None, None]:
"""Apply the provided parameters to the UDF."""

Expand All @@ -38,11 +42,16 @@
batch UDF calls.
"""

is_batching = False

def __call__(
self,
execute: Callable[..., Generator[Sequence, None, None]],
execute: Callable,
query: "Select",
ids_only: bool = False,
) -> Generator[Sequence, None, None]:
if ids_only:
query = query.with_only_columns(get_query_id_column(query))
return execute(query)


Expand All @@ -52,14 +61,20 @@
is passed a sequence of multiple parameter sets.
"""

is_batching = True

def __init__(self, count: int):
self.count = count

def __call__(
self,
execute: Callable[..., Generator[Sequence, None, None]],
execute: Callable,
query: "Select",
ids_only: bool = False,
) -> Generator[RowsOutputBatch, None, None]:
if ids_only:
query = query.with_only_columns(get_query_id_column(query))

Check warning on line 76 in src/datachain/query/batch.py

View check run for this annotation

Codecov / codecov/patch

src/datachain/query/batch.py#L76

Added line #L76 was not covered by tests

# choose page size that is a multiple of the batch size
page_size = math.ceil(SELECT_BATCH_SIZE / self.count) * self.count

Expand All @@ -84,19 +99,31 @@
Dataset rows need to be sorted by the grouping column.
"""

is_batching = True

def __call__(
self,
execute: Callable[..., Generator[Sequence, None, None]],
execute: Callable,
query: "Select",
ids_only: bool = False,
) -> Generator[RowsOutputBatch, None, None]:
id_col = get_query_id_column(query)
if (partition_col := get_query_column(query, PARTITION_COLUMN_ID)) is None:
raise RuntimeError("partition column not found in query")

Check warning on line 112 in src/datachain/query/batch.py

View check run for this annotation

Codecov / codecov/patch

src/datachain/query/batch.py#L112

Added line #L112 was not covered by tests

if ids_only:
query = query.with_only_columns(id_col, partition_col)

Check warning on line 115 in src/datachain/query/batch.py

View check run for this annotation

Codecov / codecov/patch

src/datachain/query/batch.py#L115

Added line #L115 was not covered by tests

current_partition: Optional[int] = None
batch: list[Sequence] = []

query_fields = [str(c.name) for c in query.selected_columns]
# query_fields = [column_name(col) for col in query.inner_columns]
dreadatour marked this conversation as resolved.
Show resolved Hide resolved
id_column_idx = query_fields.index("sys__id")
partition_column_idx = query_fields.index(PARTITION_COLUMN_ID)

ordered_query = query.order_by(None).order_by(
PARTITION_COLUMN_ID,
partition_col,
*query._order_by_clauses,
)

Expand All @@ -108,7 +135,7 @@
if len(batch) > 0:
yield RowsOutputBatch(batch)
batch = []
batch.append(row)
batch.append([row[id_column_idx]] if ids_only else row)

if len(batch) > 0:
yield RowsOutputBatch(batch)
14 changes: 6 additions & 8 deletions src/datachain/query/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,6 @@
from datachain.dataset import DatasetStatus, RowDict
from datachain.error import DatasetNotFoundError, QueryScriptCancelError
from datachain.func.base import Function
from datachain.lib.udf import UDFAdapter
from datachain.progress import CombinedDownloadCallback
from datachain.sql.functions.random import rand
from datachain.utils import (
Expand All @@ -65,7 +64,7 @@
from datachain.catalog import Catalog
from datachain.data_storage import AbstractWarehouse
from datachain.dataset import DatasetRecord
from datachain.lib.udf import UDFResult
from datachain.lib.udf import UDFAdapter, UDFResult

P = ParamSpec("P")

Expand Down Expand Up @@ -301,7 +300,7 @@ def adjust_outputs(
return row


def get_udf_col_types(warehouse: "AbstractWarehouse", udf: UDFAdapter) -> list[tuple]:
def get_udf_col_types(warehouse: "AbstractWarehouse", udf: "UDFAdapter") -> list[tuple]:
"""Optimization: Precompute UDF column types so these don't have to be computed
in the convert_type function for each row in a loop."""
dialect = warehouse.db.dialect
Expand All @@ -322,7 +321,7 @@ def process_udf_outputs(
warehouse: "AbstractWarehouse",
udf_table: "Table",
udf_results: Iterator[Iterable["UDFResult"]],
udf: UDFAdapter,
udf: "UDFAdapter",
batch_size: int = INSERT_BATCH_SIZE,
cb: Callback = DEFAULT_CALLBACK,
) -> None:
Expand Down Expand Up @@ -366,7 +365,7 @@ def get_generated_callback(is_generator: bool = False) -> Callback:

@frozen
class UDFStep(Step, ABC):
udf: UDFAdapter
udf: "UDFAdapter"
catalog: "Catalog"
partition_by: Optional[PartitionByType] = None
parallel: Optional[int] = None
Expand Down Expand Up @@ -479,7 +478,6 @@ def populate_udf_table(self, udf_table: "Table", query: Select) -> None:
udf_fields,
udf_inputs,
self.catalog,
self.is_generator,
self.cache,
download_cb,
processed_cb,
Expand Down Expand Up @@ -1490,7 +1488,7 @@ def chunk(self, index: int, total: int) -> "Self":
@detach
def add_signals(
self,
udf: UDFAdapter,
udf: "UDFAdapter",
parallel: Optional[int] = None,
workers: Union[bool, int] = False,
min_task_size: Optional[int] = None,
Expand Down Expand Up @@ -1534,7 +1532,7 @@ def subtract(self, dq: "DatasetQuery", on: Sequence[tuple[str, str]]) -> "Self":
@detach
def generate(
self,
udf: UDFAdapter,
udf: "UDFAdapter",
parallel: Optional[int] = None,
workers: Union[bool, int] = False,
min_task_size: Optional[int] = None,
Expand Down
Loading
Loading