-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TLDR-585 added TEDS table benchmark (#398)
* TLDR-585 added TEDS table benchmark * TLDR-585 fixed after review * TLDR-585 fixed bug, include cells's content in metric * TLDR-591 added table generation benchmark * TLDR-585 fixed after review
- Loading branch information
Showing
8 changed files
with
862 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
{ | ||
"mode_metric_structure_only": false, | ||
"mean": 0.9468374367023571, | ||
"images": { | ||
"example_with_table0_0.png": 0.9525583036909738, | ||
"example_with_table0_1.png": 0.9264351862896008, | ||
"example_with_table6.png": 0.989010989010989, | ||
"example_with_table4.jpg": 0.908436211832951, | ||
"example_with_table17.jpg": 0.8078952936402488, | ||
"example_with_table_hor_vert_union.png": 0.9896091617933723, | ||
"example_with_table1.png": 0.9781560283687943, | ||
"example_with_table_horizontal_union.jpg": 0.9925757575757576, | ||
"example_with_table3.png": 0.9778008866078716, | ||
"example_with_table5.png": 0.9458965482130129 | ||
} | ||
} |
506 changes: 506 additions & 0 deletions
506
resources/benchmarks/table_benchmark_on_generated_data.json
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
import zipfile | ||
from pathlib import Path | ||
import json | ||
import pprint | ||
from typing import Optional, List | ||
import numpy as np | ||
import wget | ||
|
||
from dedoc.api.api_utils import table2html | ||
from dedoc.config import get_config | ||
from dedoc.readers import PdfImageReader | ||
from dedoc.readers.pdf_reader.pdf_image_reader.table_recognizer.table_recognizer import TableRecognizer | ||
from scripts.benchmark_table.metric import TEDS | ||
|
||
path_result = Path(__file__).parent / ".." / ".." / "resources" / "benchmarks" | ||
path_result.absolute().mkdir(parents=True, exist_ok=True) | ||
|
||
table_recognizer = TableRecognizer(config=get_config()) | ||
image_reader = PdfImageReader(config=get_config()) | ||
|
||
GENERATED_BENCHMARK = "on_generated_data" | ||
OURDATA_BENCHMARK = "on_our_data" | ||
TYPE_BENCHMARK = OURDATA_BENCHMARK | ||
|
||
|
||
def call_metric(pred_json: dict, true_json: dict, structure_only: bool = False, ignore_nodes: Optional[List] = None) -> dict: | ||
teds = TEDS(structure_only=structure_only, ignore_nodes=ignore_nodes) | ||
scores = teds.batch_evaluate(pred_json, true_json) | ||
pp = pprint.PrettyPrinter() | ||
pp.pprint(scores) | ||
|
||
return scores | ||
|
||
|
||
def get_tables(image_path: Path) -> str: | ||
document = image_reader.read(str(image_path)) | ||
|
||
for table in document.tables: | ||
table.metadata.uid = "test_id" | ||
table2id = {"test_id": 0} | ||
html_tables = [table2html(table, table2id) for table in document.tables] | ||
|
||
# TODO: while works with one table in an image | ||
return html_tables[0] | ||
|
||
|
||
def make_predict_json(data_path: Path) -> dict: | ||
predict_json = {} | ||
for pathname in Path.iterdir(data_path): | ||
print(pathname) | ||
|
||
predict_json[pathname.name] = {"html": "<html><body>" + get_tables(pathname) + "</body></html>"} | ||
|
||
return predict_json | ||
|
||
|
||
def download_dataset(data_dir: Path, name_zip: str, url: str) -> None: | ||
if Path.exists(data_dir): | ||
print(f"Use cached benchmark data from {data_dir}") | ||
return | ||
|
||
data_dir.mkdir(parents=True, exist_ok=True) | ||
pdfs_zip_path = data_dir / name_zip | ||
wget.download(url, str(data_dir)) | ||
|
||
with zipfile.ZipFile(pdfs_zip_path, 'r') as zip_ref: | ||
zip_ref.extractall(data_dir) | ||
pdfs_zip_path.unlink() | ||
|
||
print(f"Benchmark data downloaded to {data_dir}") | ||
|
||
|
||
def prediction(path_pred: Path, path_images: Path) -> dict: | ||
pred_json = make_predict_json(path_images) | ||
with path_pred.open("w") as fd: | ||
json.dump(pred_json, fd, indent=2, ensure_ascii=False) | ||
|
||
return pred_json | ||
|
||
|
||
def benchmark_on_our_data() -> dict: | ||
data_dir = Path(get_config()["intermediate_data_path"]) / "benchmark_table_data" | ||
path_images = data_dir / "images" | ||
path_gt = data_dir / "gt.json" | ||
path_pred = data_dir / "pred.json" | ||
download_dataset(data_dir, | ||
name_zip="benchmark_table_data.zip", | ||
url="https://at.ispras.ru/owncloud/index.php/s/Xaf4OyHj6xN2RHH/download") | ||
|
||
mode_metric_structure_only = False | ||
|
||
with open(path_gt, "r") as fp: | ||
gt_json = json.load(fp) | ||
''' | ||
Creating base html (based on method predictions for future labeling) | ||
path_images = data_dir / "images_tmp" | ||
pred_json = prediction("gt_tmp.json", path_images) | ||
''' | ||
pred_json = prediction(path_pred, path_images) | ||
scores = call_metric(pred_json=pred_json, true_json=gt_json, structure_only=mode_metric_structure_only) | ||
|
||
result = dict() | ||
result["mode_metric_structure_only"] = mode_metric_structure_only | ||
result["mean"] = np.mean([score for score in scores.values()]) | ||
result["images"] = scores | ||
|
||
return result | ||
|
||
|
||
def benchmark_on_generated_table() -> dict: | ||
""" | ||
Generated data from https://github.com/hassan-mahmood/TIES_DataGeneration | ||
Article generation information https://arxiv.org/pdf/1905.13391.pdf | ||
Note: generate the 1st table tape category | ||
Note: don't use header table tag <th>, replacing on <td> tag | ||
Note: all generated data (four categories) you can download from | ||
TODO: some tables have a low quality. Should to trace the reason. | ||
All generated data (all categories) we can download from https://at.ispras.ru/owncloud/index.php/s/cjpCIR7I0G4JzZU | ||
""" | ||
|
||
data_dir = Path(get_config()["intermediate_data_path"]) / "visualizeimgs" / "category1" | ||
path_images = data_dir / "img_500" | ||
path_gt = data_dir / "html_500" | ||
download_dataset(data_dir, | ||
name_zip="benchmark_table_data_generated_500_tables_category_1.zip", | ||
url="https://at.ispras.ru/owncloud/index.php/s/gItWxupnF2pve6B/download") | ||
mode_metric_structure_only = True | ||
|
||
# make common ground-truth file | ||
common_gt_json = {} | ||
for pathname in Path.iterdir(path_gt): | ||
image_name = pathname.name.split(".")[0] + '.png' | ||
with open(pathname, "r") as fp: | ||
table_html = fp.read() | ||
# exclude header tags | ||
table_html = table_html.replace("<th ", "<td ") | ||
table_html = table_html.replace("</th>", "</td>") | ||
|
||
common_gt_json[image_name] = {"html": table_html} | ||
|
||
file_common_gt = data_dir / "common_gt.json" | ||
with file_common_gt.open("w") as fd: | ||
json.dump(common_gt_json, fd, indent=2, ensure_ascii=False) | ||
|
||
# calculate metrics | ||
path_pred = data_dir / "pred.json" | ||
|
||
pred_json = prediction(path_pred, path_images) | ||
scores = call_metric(pred_json=pred_json, true_json=common_gt_json, | ||
structure_only=mode_metric_structure_only, | ||
ignore_nodes=['span', 'style', 'head', 'h4']) | ||
|
||
result = dict() | ||
result["mode_metric_structure_only"] = mode_metric_structure_only | ||
result["mean"] = np.mean([score for score in scores.values()]) | ||
result["images"] = scores | ||
|
||
return result | ||
|
||
|
||
if __name__ == "__main__": | ||
result = benchmark_on_our_data() if TYPE_BENCHMARK == OURDATA_BENCHMARK else benchmark_on_generated_table() | ||
|
||
# save benchmarks | ||
file_result = path_result / f"table_benchmark_{TYPE_BENCHMARK}.json" | ||
with file_result.open("w") as fd: | ||
json.dump(result, fd, indent=2, ensure_ascii=False) |
Oops, something went wrong.