Skip to content

Renal Health Classification: Enhancing Diagnostic Precision

License

Notifications You must be signed in to change notification settings

iprajwaal/Renal-Health

Repository files navigation

Renal Health Classification: Enhancing Diagnostic Precision!!

Version License: ISC Twitter: Prajwal_b_k

In this repo, you will find a demonstration of how to build a Renal Health Classification model. The model is trained using Transfer Learning and the VGG16 architecture.

Prerequisites 📋

Model Architecture 🏗️

_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 dense (Dense)               (None, 4)                 100356    
                                                                 
=================================================================
Total params: 14815044 (56.51 MB)
Trainable params: 100356 (392.02 KB)
Non-trainable params: 14714688 (56.13 MB)
_________________________________________________________________
(venv) prajwal@PK-2 Renal-Health % dvc dag
+----------------+            +--------------------+ 
| data_ingestion |            | prepare_base_model | 
+----------------+*****       +--------------------+ 
         *             *****             *           
         *                  ******       *           
         *                        ***    *           
         **                        +----------+      
           **                      | training |      
             ***                   +----------+      
                ***             ***                  
                   **         **                     
                     **     **                       
                  +------------+                     
                  | evaluation |                     
                  +------------+

Getting Started 🚀

How to run the project

  1. Clone the repository
git clone https://github.com/prajwal3104/Renal-Health.git
  1. Create a virtual environment
python3.8 -m venv venv
  1. Activate the virtual environment
source venv/bin/activate
  1. Install the requirements
pip install -r requirements.txt
  1. Run the project or the pipeline's
python main.py

Author 👤

🤝 Contributing

Contributions, issues and feature requests are welcome!
Feel free to check issues page.

Show your support

Give a ⭐️ if this project helped you!

📝 License

Copyright © 2024 Prajwal.
This project is MIT licensed.

About

Renal Health Classification: Enhancing Diagnostic Precision

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published