Skip to content

modified: src/1-line-plot.ipynb #19

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 48 additions & 3 deletions src/1-line-plot.ipynb

Large diffs are not rendered by default.

45 changes: 42 additions & 3 deletions src/2-bar-plot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -11,16 +11,55 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGzCAYAAABzfl4TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJLZJREFUeJzt3XlU1PX+x/HXgDISmwuiUKQiGu4WLVe5pqZmJppli2Yp2mJFmlerm93jlinZStcM03C5RzDDFrUFK20VupbmUmZlqXlz30BcMJjP748O82sCl8EPjuDzcc6c03zn+515MxPy5DvfL+MwxhgBAABY4OfrAQAAQNVBWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWACoMFu2bJHD4dCcOXN8Pco5r1OnTurUqZOvxwDOGGGBKufnn3/W0KFDFRMToxo1aig0NFQJCQl68cUXdfToUa/v7+WXXz4vfjD27t1bF1xwgQ4dOnTCdQYMGKCAgADt27fvLE5WPuPHj5fD4XBf/Pz8FBkZqcTERH355ZdnbY6GDRt6zBEREaEOHTrorbfesnL/R44c0fjx4/XJJ59YuT/gTFXz9QCATe+++65uueUWOZ1ODRw4UC1bttTx48f1xRdf6JFHHtF3332nGTNmeHWfL7/8ssLDw5WUlFQxQ58jBgwYoCVLluitt97SwIEDS91+5MgRLVq0SNddd53q1KnjgwnLJy0tTcHBwXK5XNq2bZtmzpypq6++WitXrlTbtm3Pygxt27bVqFGjJEnbt2/XK6+8optuuklpaWm67777zui+jxw5ogkTJkgSezxwTiAsUGVs3rxZ/fr1U4MGDbR8+XJFRka6b0tOTtamTZv07rvv+nDCinX48GEFBQWVe/vevXsrJCREmZmZZYbFokWLdPjwYQ0YMOBMxjzrbr75ZoWHh7uv9+nTRy1btlRWVpaVsCgqKpLL5VJAQMAJ17nwwgt1xx13uK8PHDhQsbGxeuGFF844LIBzDW+FoMp4+umnVVBQoPT0dI+oKBEbG6uHHnrIfX327Nm65pprFBERIafTqebNmystLc1jm4YNG+q7777Tp59+6t6V/effCg8ePKgRI0YoOjpaTqdTsbGxmjJlilwul8f97Nu3T3feeadCQ0NVs2ZNDRo0SGvXri3z+IPly5erQ4cOCgoKUs2aNXXDDTfo+++/91inZDf/hg0bdPvtt6tWrVr6+9//rtmzZ8vhcOibb74p9fVPnjxZ/v7++u2338p8/gIDA3XTTTdp2bJl2r17d6nbMzMzFRISot69e2v//v16+OGH1apVKwUHBys0NFQ9evTQ2rVry7zvPzvRsQRJSUlq2LChxzKXy6XU1FS1aNFCNWrUUL169TR06FAdOHDglI9zIvXr15ckVav2/79XHT9+XGPHjlV8fLzCwsIUFBSkDh066OOPP/bYtuSYkWeffVapqalq3LixnE6nNmzY4PUMzZo10+bNm0+63u7du3XXXXepXr16qlGjhtq0aaO5c+d6zFO3bl1J0oQJE9z/j44fP96reQCb2GOBKmPJkiWKiYlR+/btT2v9tLQ0tWjRQr1791a1atW0ZMkSPfDAA3K5XEpOTpYkpaamatiwYQoODta//vUvSVK9evUk/bELumPHjvrtt980dOhQXXzxxcrJydHo0aO1Y8cOpaamSvrjh2OvXr20cuVK3X///YqLi9OiRYs0aNCgUjN99NFH6tGjh2JiYjR+/HgdPXpUU6dOVUJCglavXl3qB+8tt9yiJk2aaPLkyTLG6Oabb1ZycrIyMjJ06aWXeqybkZGhTp066cILLzzhczJgwADNnTtXr7/+uh588EH38v3792vp0qXq37+/AgMD9d133+ntt9/WLbfcokaNGmnXrl165ZVX1LFjR23YsEFRUVGn9RqcytChQzVnzhwNHjxYw4cP1+bNm/XSSy/pm2++0YoVK1S9evVT3sf+/fsl/fE6/Pbbb5o4caJq1KihW2+91b1Ofn6+Xn31VfXv31/33HOPDh06pPT0dHXv3r3Mt0xmz56tY8eO6d5775XT6VTt2rW9+rp+//13bdu27aRvKR09elSdOnXSpk2b9OCDD6pRo0bKyspSUlKSDh48qIceekh169ZVWlqa7r//ft1444266aabJEmtW7f2ah7AKgNUAXl5eUaSueGGG057myNHjpRa1r17dxMTE+OxrEWLFqZjx46l1p04caIJCgoyP/74o8fyxx57zPj7+5tff/3VGGPMG2+8YSSZ1NRU9zrFxcXmmmuuMZLM7Nmz3cvbtm1rIiIizL59+9zL1q5da/z8/MzAgQPdy8aNG2ckmf79+5eaq3///iYqKsoUFxe7l61evbrUY5WlqKjIREZGmnbt2nksnz59upFkli5daowx5tixYx73b4wxmzdvNk6n0zzxxBMey/76uB07dizz+Rw0aJBp0KCB+/rnn39uJJmMjAyP9bKzs8tc/lclz9FfLzVr1jTZ2dmlvu7CwkKPZQcOHDD16tUzQ4YMKfX1hIaGmt27d5/08Us0aNDAXHvttWbPnj1mz549Zu3ataZfv35Gkhk2bJh7vb8+L6mpqUaSmTdvnnvZ8ePHTbt27UxwcLDJz883xhizZ88eI8mMGzfutOYBKhpvhaBKyM/PlySFhISc9jaBgYHu/87Ly9PevXvVsWNH/fLLL8rLyzvl9llZWerQoYNq1aqlvXv3ui9du3ZVcXGxPvvsM0lSdna2qlevrnvuuce9rZ+fn3uvSIkdO3ZozZo1SkpK8vgNuHXr1urWrZvee++9UjOU9f78wIEDtX37do/d+BkZGQoMDFTfvn1P+jX5+/urX79+ys3N1ZYtW9zLMzMzVa9ePXXp0kWS5HQ65ef3xz8fxcXF2rdvn4KDg3XJJZdo9erVJ32M05WVlaWwsDB169bN4/mNj49XcHBwqbcpTuSNN97Qhx9+qA8++ECzZ89W06ZN1bdvX+Xk5Hh83SXHSLhcLu3fv19FRUW6/PLLy/x6+vbt634L4nR88MEHqlu3rurWras2bdooKytLd955p6ZMmXLCbd577z3Vr19f/fv3dy+rXr26hg8froKCAn366aen/fjA2cRbIagSQkNDJemkp0r+1YoVKzRu3Djl5ubqyJEjHrfl5eUpLCzspNv/9NNPWrdu3Ql/wJQcp7B161ZFRkbqggsu8Lg9NjbW4/rWrVslSZdcckmp+2rWrJmWLl1a6gDNRo0alVq3W7duioyMVEZGhrp06SKXy6X58+frhhtuOK3wGjBggF544QVlZmbq8ccf1//+9z99/vnnGj58uPz9/SX98cP3xRdf1Msvv6zNmzeruLjYvb2tM0Z++ukn5eXlKSIioszbyzoOpCxXX321x8GbN998s5o0aaJhw4Zp1apV7uVz587Vc889p40bN+r33393Ly/rOS5r2clcddVVevLJJ+VwOHTBBReoWbNmqlmz5km32bp1q5o0aeIOuBLNmjVz3w6ciwgLVAmhoaGKiorSt99+e1rr//zzz+rSpYvi4uL0/PPPKzo6WgEBAXrvvff0wgsvlDr4siwul0vdunXTo48+WubtTZs29eprKI8/73Up4e/vr9tvv10zZ87Uyy+/rBUrVmj79u0eZyWcTHx8vOLi4jR//nw9/vjjmj9/vowxHmeDTJ48WWPGjNGQIUM0ceJE1a5dW35+fhoxYsQpnzuHwyFjTKnlf44T6Y/nNyIiQhkZGWXejzd7DP4sODhYV111lfssl6CgIM2bN09JSUnq06ePHnnkEUVERMjf318pKSn6+eefS91HWc/7yYSHh6tr167lmheobAgLVBmJiYmaMWOGcnNz1a5du5Ouu2TJEhUWFmrx4sW6+OKL3cvL2r3ucDjKvI/GjRuroKDglD8wGjRooI8//lhHjhzx2GuxadOmUutJ0g8//FDqPjZu3Kjw8PDTPp104MCBeu6557RkyRK9//77qlu3rrp3735a20p/7LUYM2aM1q1bp8zMTDVp0kRXXHGF+/aFCxeqc+fOSk9P99ju4MGDHnsHylKrVi398ssvpZb/9Tfwxo0b66OPPlJCQoLXP8hPpaioSJJUUFCgoKAgLVy4UDExMXrzzTc9Xu9x48ZZfVxvNGjQQOvWrZPL5fLYa7Fx40b37dKJ//8EfIVjLFBlPProowoKCtLdd9+tXbt2lbr9559/1osvvihJ7l36f/7NOS8vT7Nnzy61XVBQkA4ePFhq+a233qrc3FwtXbq01G0HDx50//Dq3r27fv/9d82cOdN9u8vl0rRp0zy2iYyMVNu2bTV37lyPx/v222/1wQcf6Prrrz/JV++pdevWat26tV599VW98cYb6tevn8fpladSsndi7NixWrNmTam/XeHv719qr0NWVtYJT2X9s8aNG2vjxo3as2ePe9natWu1YsUKj/VuvfVWFRcXa+LEiaXuo6ioqMzX5HTs379fOTk5ql+/vvttlrL+f/jvf/+r3Nzccj2GDddff7127typBQsWuJcVFRVp6tSpCg4OVseOHSXJHavlfT4A29hjgSqjcePGyszM1G233aZmzZp5/OXNnJwc96l6knTttdcqICBAvXr10tChQ1VQUKCZM2cqIiJCO3bs8Ljf+Ph4paWl6cknn1RsbKwiIiJ0zTXX6JFHHtHixYuVmJiopKQkxcfH6/Dhw1q/fr0WLlyoLVu2KDw8XH369NGVV16pUaNGadOmTYqLi9PixYvdp0H++TfOZ555Rj169FC7du101113uU83DQsL8/pvEwwcOFAPP/ywJJ322yAlGjVqpPbt22vRokWSVCosEhMT9cQTT2jw4MFq37691q9fr4yMDMXExJzyvocMGaLnn39e3bt311133aXdu3dr+vTpatGihfsgXEnq2LGjhg4dqpSUFK1Zs0bXXnutqlevrp9++klZWVl68cUXdfPNN5/y8RYuXKjg4GAZY7R9+3alp6frwIEDmj59uvu5T0xM1Jtvvqkbb7xRPXv21ObNmzV9+nQ1b95cBQUF3jx11tx777165ZVXlJSUpFWrVqlhw4ZauHChVqxYodTUVPfxMoGBgWrevLkWLFigpk2bqnbt2mrZsqVatmzpk7kBTjdFlfPjjz+ae+65xzRs2NAEBASYkJAQk5CQYKZOnWqOHTvmXm/x4sWmdevWpkaNGqZhw4ZmypQpZtasWUaS2bx5s3u9nTt3mp49e5qQkBAjyeOUwEOHDpnRo0eb2NhYExAQYMLDw0379u3Ns88+a44fP+5eb8+ePeb22283ISEhJiwszCQlJZkVK1YYSea1117zmP+jjz4yCQkJJjAw0ISGhppevXqZDRs2eKxTcirlnj17Tvg87Nixw/j7+5umTZuW63mcNm2akWSuvPLKUrcdO3bMjBo1ykRGRprAwECTkJBgcnNzS50yWdbppsYYM2/ePBMTE2MCAgJM27ZtzdKlS0udblpixowZJj4+3gQGBpqQkBDTqlUr8+ijj5rt27efdP6yTjcNCgoy7dq1M6+//rrHui6Xy0yePNk0aNDAOJ1Oc+mll5p33nmn1EwlX88zzzxzyuevRIMGDUzPnj1PuV5Zp+Hu2rXLDB482ISHh5uAgADTqlWrMk8ZzsnJMfHx8SYgIIBTT+FzDmPKOIoKQIV7++23deONN+qLL75QQkKC9fvfu3evIiMjNXbsWI0ZM8b6/QNAWTjGAjgL/vqpqsXFxZo6dapCQ0N12WWXVchjzpkzR8XFxbrzzjsr5P4BoCwcYwGcBcOGDdPRo0fVrl07FRYW6s0331ROTo4mT55s/YyH5cuXa8OGDZo0aZL69OlT6s+AA0BF4q0Q4CzIzMzUc889p02bNunYsWOKjY3V/fff7/F5HLZ06tRJOTk5SkhI0Lx580762SAAYBthAQAArOEYCwAAYA1hAQAArDnrB2+6XC5t375dISEh/ClaAAAqCWOMDh06pKioqFIfjvdnZz0stm/frujo6LP9sAAAwIJt27bpoosuOuHtZz0sSv4M7bZt29wfdQ0AAM5t+fn5io6Odv8cP5GzHhYlb3+EhoYSFgAAVDKnOoyBgzcBAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa876x6YDAKq+CY4Jvh7hvDXOjPPp47PHAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgjVdhUVxcrDFjxqhRo0YKDAxU48aNNXHiRBljKmo+AABQiVTzZuUpU6YoLS1Nc+fOVYsWLfT1119r8ODBCgsL0/DhwytqRgAAUEl4FRY5OTm64YYb1LNnT0lSw4YNNX/+fK1cufKE2xQWFqqwsNB9PT8/v5yjAgCAc51Xb4W0b99ey5Yt048//ihJWrt2rb744gv16NHjhNukpKQoLCzMfYmOjj6ziQEAwDnLqz0Wjz32mPLz8xUXFyd/f38VFxdr0qRJGjBgwAm3GT16tEaOHOm+np+fT1wAAFBFeRUWr7/+ujIyMpSZmakWLVpozZo1GjFihKKiojRo0KAyt3E6nXI6nVaGBQAA5zavwuKRRx7RY489pn79+kmSWrVqpa1btyolJeWEYQEAAM4fXh1jceTIEfn5eW7i7+8vl8tldSgAAFA5ebXHolevXpo0aZIuvvhitWjRQt98842ef/55DRkypKLmAwAAlYhXYTF16lSNGTNGDzzwgHbv3q2oqCgNHTpUY8eOraj5AABAJeJVWISEhCg1NVWpqakVNA4AAKjM+KwQAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa6r5egDgdDgcvp7g/GWMrycAUJmwxwIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGu8DovffvtNd9xxh+rUqaPAwEC1atVKX3/9dUXMBgAAKplq3qx84MABJSQkqHPnznr//fdVt25d/fTTT6pVq1ZFzQcAACoRr8JiypQpio6O1uzZs93LGjVqZH0oAABQOXn1VsjixYt1+eWX65ZbblFERIQuvfRSzZw586TbFBYWKj8/3+MCAACqJq/C4pdfflFaWpqaNGmipUuX6v7779fw4cM1d+7cE26TkpKisLAw9yU6OvqMhwYAAOcmhzHGnO7KAQEBuvzyy5WTk+NeNnz4cH311VfKzc0tc5vCwkIVFha6r+fn5ys6Olp5eXkKDQ09g9FxPnE4fD3B+ev0/4UA/t8ExwRfj3DeGmfGVcj95ufnKyws7JQ/v73aYxEZGanmzZt7LGvWrJl+/fXXE27jdDoVGhrqcQEAAFWTV2GRkJCgH374wWPZjz/+qAYNGlgdCgAAVE5ehcU//vEPffnll5o8ebI2bdqkzMxMzZgxQ8nJyRU1HwAAqES8CosrrrhCb731lubPn6+WLVtq4sSJSk1N1YABAypqPgAAUIl49XcsJCkxMVGJiYkVMQsAAKjk+KwQAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa6r5egCrHA5fT3D+MsbXEwAAzgHssQAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwJozCounnnpKDodDI0aMsDQOAACozModFl999ZVeeeUVtW7d2uY8AACgEitXWBQUFGjAgAGaOXOmatWqZXsmAABQSZUrLJKTk9WzZ0917dr1lOsWFhYqPz/f4wIAAKqmat5u8Nprr2n16tX66quvTmv9lJQUTZgwwevBAABA5ePVHott27bpoYceUkZGhmrUqHFa24wePVp5eXnuy7Zt28o1KAAAOPd5tcdi1apV2r17ty677DL3suLiYn322Wd66aWXVFhYKH9/f49tnE6nnE6nnWkBAMA5zauw6NKli9avX++xbPDgwYqLi9M///nPUlEBAADOL16FRUhIiFq2bOmxLCgoSHXq1Cm1HAAAnH/4y5sAAMAar88K+atPPvnEwhgAAKAqYI8FAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANdV8PQCA85djgsPXI5y3zDjj6xFQRbHHAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa7wKi5SUFF1xxRUKCQlRRESE+vTpox9++KGiZgMAAJWMV2Hx6aefKjk5WV9++aU+/PBD/f7777r22mt1+PDhipoPAABUItW8WTk7O9vj+pw5cxQREaFVq1bp6quvtjoYAACofLwKi7/Ky8uTJNWuXfuE6xQWFqqwsNB9PT8//0weEgAAnMPKffCmy+XSiBEjlJCQoJYtW55wvZSUFIWFhbkv0dHR5X1IAABwjit3WCQnJ+vbb7/Va6+9dtL1Ro8erby8PPdl27Zt5X1IAABwjivXWyEPPvig3nnnHX322We66KKLTrqu0+mU0+ks13AAAKBy8SosjDEaNmyY3nrrLX3yySdq1KhRRc0FAAAqIa/CIjk5WZmZmVq0aJFCQkK0c+dOSVJYWJgCAwMrZEAAAFB5eHWMRVpamvLy8tSpUydFRka6LwsWLKio+QAAQCXi9VshAAAAJ8JnhQAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArClXWEybNk0NGzZUjRo1dNVVV2nlypW25wIAAJWQ12GxYMECjRw5UuPGjdPq1avVpk0bde/eXbt3766I+QAAQCXidVg8//zzuueeezR48GA1b95c06dP1wUXXKBZs2ZVxHwAAKASqebNysePH9eqVas0evRo9zI/Pz917dpVubm5ZW5TWFiowsJC9/W8vDxJUn5+fnnmxbmK17PKqtCX9lgF3jdOqqL/DT7Gi+szFfXaltyvMeak63kVFnv37lVxcbHq1avnsbxevXrauHFjmdukpKRowoQJpZZHR0d789A414WF+XoCVBBe2qop7Cle2KrqqbCnKvT+Dx06pLCT/MPgVViUx+jRozVy5Ej3dZfLpf3796tOnTpyOBwV/fCVRn5+vqKjo7Vt2zaFhob6ehxYwutadfHaVl28tmUzxujQoUOKioo66XpehUV4eLj8/f21a9cuj+W7du1S/fr1y9zG6XTK6XR6LKtZs6Y3D3teCQ0N5X/kKojXterita26eG1LO9meihJeHbwZEBCg+Ph4LVu2zL3M5XJp2bJlateunfcTAgCAKsXrt0JGjhypQYMG6fLLL9eVV16p1NRUHT58WIMHD66I+QAAQCXidVjcdttt2rNnj8aOHaudO3eqbdu2ys7OLnVAJ7zjdDo1bty4Um8boXLjda26eG2rLl7bM+MwpzpvBAAA4DTxWSEAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEszgG5ubny9/dXz549fT0KLElKSpLD4XBf6tSpo+uuu07r1q3z9WiwYOfOnRo2bJhiYmLkdDoVHR2tXr16efzxQFQuf/6erV69uurVq6du3bpp1qxZcrlcvh6vUiEszgHp6ekaNmyYPvvsM23fvt3X48CS6667Tjt27NCOHTu0bNkyVatWTYmJib4eC2doy5Ytio+P1/Lly/XMM89o/fr1ys7OVufOnZWcnOzr8XAGSr5nt2zZovfff1+dO3fWQw89pMTERBUVFfl6vEqjwj+EDCdXUFCgBQsW6Ouvv9bOnTs1Z84cPf74474eCxY4nU73Z+jUr19fjz32mDp06KA9e/aobt26Pp4O5fXAAw/I4XBo5cqVCgoKci9v0aKFhgwZ4sPJcKb+/D174YUX6rLLLtPf/vY3denSRXPmzNHdd9/t4wkrB/ZY+Njrr7+uuLg4XXLJJbrjjjs0a9asU37WPSqfgoICzZs3T7GxsapTp46vx0E57d+/X9nZ2UpOTvaIihJ8wGLVc80116hNmzZ68803fT1KpUFY+Fh6erruuOMOSX/shsvLy9Onn37q46lgwzvvvKPg4GAFBwcrJCREixcv1oIFC+Tnx7ddZbVp0yYZYxQXF+frUXAWxcXFacuWLb4eo9LgXzgf+uGHH7Ry5Ur1799fklStWjXddtttSk9P9/FksKFz585as2aN1qxZo5UrV6p79+7q0aOHtm7d6uvRUE7sTTw/GWPkcDh8PUalwTEWPpSenq6ioiJFRUW5lxlj5HQ69dJLL53W597j3BUUFKTY2Fj39VdffVVhYWGaOXOmnnzySR9OhvJq0qSJHA6HNm7c6OtRcBZ9//33atSoka/HqDTYY+EjRUVF+s9//qPnnnvO/VvtmjVrtHbtWkVFRWn+/Pm+HhGWORwO+fn56ejRo74eBeVUu3Ztde/eXdOmTdPhw4dL3X7w4MGzPxQq1PLly7V+/Xr17dvX16NUGuyx8JF33nlHBw4c0F133VVqz0Tfvn2Vnp6u++67z0fTwYbCwkLt3LlTknTgwAG99NJLKigoUK9evXw8Gc7EtGnTlJCQoCuvvFJPPPGEWrduraKiIn344YdKS0vT999/7+sRUU4l37PFxcXatWuXsrOzlZKSosTERA0cONDX41UahIWPpKenq2vXrmW+3dG3b189/fTTWrdunVq3bu2D6WBDdna2IiMjJUkhISGKi4tTVlaWOnXq5NvBcEZiYmK0evVqTZo0SaNGjdKOHTtUt25dxcfHKy0tzdfj4QyUfM9Wq1ZNtWrVUps2bfTvf/9bgwYN4qBrLzgMRyMBAABLSDAAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDX/B+LomOpYDltbAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# TASK: Create a bar plot with the following data: categories = ['A', 'B', 'C', 'D'] and values = [5, 7, 3, 9].\n",
"# Use different colors for each bar and add a title to the plot."
"# Use different colors for each bar and add a title to the plot.\n",
"\n",
"import matplotlib.pyplot as plt\n",
"categories = ['A', 'B', 'C', 'D']\n",
"values = [5, 7, 3, 9]\n",
"colors = ['red', 'blue', 'green', 'purple']\n",
"\n",
"\n",
"plt.bar(categories, values, color=colors)\n",
"\n",
"\n",
"plt.title(\"Category Value Bar Plot\")\n",
"\n",
"\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
Expand Down
48 changes: 45 additions & 3 deletions src/3-scatter-plot.ipynb

Large diffs are not rendered by default.

45 changes: 42 additions & 3 deletions src/4-pie-chart.ipynb

Large diffs are not rendered by default.

70 changes: 66 additions & 4 deletions src/5-subplot.ipynb

Large diffs are not rendered by default.

45 changes: 42 additions & 3 deletions src/6-histogram.ipynb

Large diffs are not rendered by default.