Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add aten::norm and its variants #556

Merged
merged 7 commits into from
Jul 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 118 additions & 0 deletions src/ATen/native/xpu/ReduceOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -870,6 +870,124 @@ Tensor XPUNativeFunctions::amin(
return out;
}

static ScalarType get_result_or_self_value_dtype(
const Tensor& self,
const Tensor& result,
const std::optional<ScalarType>& dtype) {
if (result.defined()) {
return result.scalar_type();
} else {
return dtype.value_or(toRealValueType(self.scalar_type()));
}
}

Tensor& norm_scalaropt_dim_dtype_meta(
const Tensor& self,
const OptionalScalarRef p,
IntArrayRef dim,
bool keepdim,
ScalarType dtype,
Tensor& result) {
TORCH_CHECK(
at::isFloatingType(dtype) || at::isComplexType(dtype),
"norm(): the desired output dtype should be either floating point or complex. "
"Got ",
dtype,
" instead.");
auto out_dtype = get_result_or_self_value_dtype(self, result, dtype);
return resize_reduction(result, self, dim, keepdim, out_dtype);
}

static void impl_func_norm(
const Tensor& self,
const OptionalScalarRef& opt_p,
IntArrayRef dim,
bool keepdim,
optional<ScalarType> opt_dtype,
const Tensor& result) {
// Left this implementation without deprecating it as it is called in a number
// of places in the codebase. We should swap those by linalg_vector_norm
auto p = opt_p.has_value() ? opt_p.get() : Scalar(2.0).to<double>();
at::linalg_vector_norm_out(
const_cast<Tensor&>(result), self, p, dim, keepdim, opt_dtype);
}

Tensor XPUNativeFunctions::norm(
const Tensor& self,
const std::optional<Scalar>& p,
IntArrayRef dim,
bool keepdim,
ScalarType dtype) {
Tensor result;
auto p_ =
(p.has_value() ? at::OptionalScalarRef(&(p.value()))
: at::OptionalScalarRef());
result = norm_scalaropt_dim_dtype_meta(self, p_, dim, keepdim, dtype, result);
impl_func_norm(self, p_, dim, keepdim, dtype, result);
return result;
}

Tensor& XPUNativeFunctions::norm_out(
const Tensor& self,
const std::optional<Scalar>& p,
IntArrayRef dim,
bool keepdim,
ScalarType dtype,
Tensor& result) {
auto p_ =
(p.has_value() ? at::OptionalScalarRef(&(p.value()))
: at::OptionalScalarRef());
result = norm_scalaropt_dim_dtype_meta(self, p_, dim, keepdim, dtype, result);
impl_func_norm(self, p_, dim, keepdim, dtype, result);
return result;
}

Tensor& norm_scalaropt_dim_meta(
const Tensor& self,
const OptionalScalarRef p,
IntArrayRef dim,
bool keepdim,
Tensor& result) {
TORCH_CHECK(
at::isFloatingType(self.scalar_type()) ||
at::isComplexType(self.scalar_type()),
"norm(): input dtype should be either floating point or complex. "
"Got ",
self.scalar_type(),
" instead.");

auto out_dtype = get_result_or_self_value_dtype(self, result, c10::nullopt);
return resize_reduction(result, self, dim, keepdim, out_dtype);
}

Tensor XPUNativeFunctions::norm(
const Tensor& self,
const std::optional<Scalar>& p,
IntArrayRef dim,
bool keepdim) {
auto p_ =
(p.has_value() ? at::OptionalScalarRef(&(p.value()))
: at::OptionalScalarRef());
Tensor result;
result = norm_scalaropt_dim_meta(self, p_, dim, keepdim, result);
impl_func_norm(self, p_, dim, keepdim, c10::nullopt, result);
return result;
}

Tensor& XPUNativeFunctions::norm_out(
const Tensor& self,
const std::optional<Scalar>& p,
IntArrayRef dim,
bool keepdim,
Tensor& result) {
auto p_ =
(p.has_value() ? at::OptionalScalarRef(&(p.value()))
: at::OptionalScalarRef());
result = norm_scalaropt_dim_meta(self, p_, dim, keepdim, result);
impl_func_norm(self, p_, dim, keepdim, c10::nullopt, result);
return result;
}

TensorIterator meta_aminmax(
const Tensor& self,
std::optional<int64_t> dim_opt,
Expand Down
1 change: 0 additions & 1 deletion src/ATen/native/xpu/XPUFallback.template
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,6 @@ TORCH_LIBRARY_IMPL(aten, XPU, m) {
"nanmedian.dim_values",
"nansum",
"nextafter.out",
"norm.out",
"ormqr",
"_pdist_backward",
"_pdist_forward",
Expand Down
1 change: 1 addition & 0 deletions test/xpu/xpu_test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@
"std_mean",
"var",
"var_mean",
"norm",
"hypot",
"unfold",
"uniform",
Expand Down
4 changes: 4 additions & 0 deletions yaml/xpu_functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -628,4 +628,8 @@ supported:
- ceil
- ceil_
- ceil.out
- norm.ScalarOpt_dim_dtype
- norm.dtype_out
- norm.ScalarOpt_dim
- norm.out
- nan_to_num.out