Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add aten::conj_physical #477

Merged
merged 8 commits into from
Jul 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions src/ATen/native/xpu/UnaryOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#include <ATen/xpu/XPUNativeFunctions.h>

#include <ATen/native/xpu/sycl/AbsKernel.h>
#include <ATen/native/xpu/sycl/UnaryComplexKernels.h>
#include <ATen/native/xpu/sycl/UnaryFractionKernels.h>
#include <ATen/native/xpu/sycl/UnaryGeometricAcosKernel.h>
#include <ATen/native/xpu/sycl/UnaryGeometricAcoshKernel.h>
Expand Down Expand Up @@ -515,6 +516,18 @@ Tensor& XPUNativeFunctions::erfc_out(const Tensor& self, Tensor& out) {
return out;
}

Tensor& XPUNativeFunctions::conj_physical_out(const Tensor& self, Tensor& out) {
auto iter = TensorIterator::unary_op(out, self);
native::xpu::conj_physical_kernel(iter);
return out;
}

Tensor& XPUNativeFunctions::conj_physical_(Tensor& self) {
if (!self.is_complex())
return self;
return XPUNativeFunctions::conj_physical_out(self, self);
}

TensorIterator ceil_meta(const Tensor& self, Tensor& out) {
TORCH_CHECK(!self.is_complex(), "ceil is not supported for complex inputs");
TensorIterator iter;
Expand Down
1 change: 0 additions & 1 deletion src/ATen/native/xpu/XPUFallback.template
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,6 @@ TORCH_LIBRARY_IMPL(aten, XPU, m) {
"cholesky",
"cholesky_inverse",
"_cholesky_solve_helper",
"conj_physical.out",
"copysign.out",
"cosh.out",
"count_nonzero.dim_IntList",
Expand Down
26 changes: 26 additions & 0 deletions src/ATen/native/xpu/sycl/UnaryComplexKernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,32 @@ void conj_kernel(TensorIterator& iter) {
}));
}

template <typename scalar_t>
struct ConjPhysicalFunctor {
scalar_t operator()(scalar_t z) const {
return std::conj(z);
}
};

template <typename TYPE>
struct ConjPhysicalFunctor<c10::complex<TYPE>> {
c10::complex<TYPE> operator()(c10::complex<TYPE> z) const {
return c10::complex<TYPE>(z.real(), -z.imag());
}
};

void conj_physical_kernel(TensorIterator& iter) {
AT_DISPATCH_SWITCH(
iter.common_dtype(),
"conj_xpu",
AT_DISPATCH_CASE_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, [&] {
// Conj is a no-op for non-complex types
copy_kernel(iter);
}) AT_DISPATCH_CASE_COMPLEX_TYPES_AND(kComplexHalf, [&] {
gpu_kernel(iter, ConjPhysicalFunctor<scalar_t>());
}));
}

template <typename scalar_t>
struct NegConjScalarFunc {
scalar_t operator()(scalar_t src_val) const {
Expand Down
2 changes: 2 additions & 0 deletions src/ATen/native/xpu/sycl/UnaryComplexKernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ namespace at::native::xpu {

void conj_kernel(TensorIterator& iter);

void conj_physical_kernel(TensorIterator& iter);

void neg_conj_kernel(TensorIterator& iter);

void neg_kernel(TensorIterator& iter);
Expand Down
10 changes: 1 addition & 9 deletions test/xpu/run_test_with_skip.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,6 @@ def launch_test(test_case, skip_list=None, exe_list=None):
"test_python_ref_torch_fallback__refs_square_xpu_bool",
"test_python_ref_torch_fallback__refs_vdot_xpu_complex128",
"test_python_ref_torch_fallback__refs_vdot_xpu_complex64",
"test_variant_consistency_eager_conj_physical_xpu_complex64",
"test_variant_consistency_eager_nn_functional_conv_transpose2d_xpu_complex64",
"test_variant_consistency_eager_nn_functional_conv_transpose2d_xpu_float32",
"test_variant_consistency_eager_nn_functional_conv_transpose3d_xpu_complex64",
Expand Down Expand Up @@ -242,8 +241,6 @@ def launch_test(test_case, skip_list=None, exe_list=None):
"test_python_ref_executor__refs_square_executor_aten_xpu_complex128",
"test_python_ref_torch_fallback__refs_square_xpu_complex128",
"test_python_ref_torch_fallback__refs_square_xpu_complex64",
"test_conj_view_conj_physical_xpu_complex64",
"test_neg_conj_view_conj_physical_xpu_complex128",
# Skip list of new added when porting XPU operators.
# See: https://github.com/intel/torch-xpu-ops/issues/128

Expand Down Expand Up @@ -2207,9 +2204,7 @@ def launch_test(test_case, skip_list=None, exe_list=None):
# torch.autograd.gradcheck.GradcheckError: Jacobian computed with forward mode mismatch for output 0 with respect to input 0,
"test_fn_fwgrad_bwgrad_nn_functional_rrelu_xpu_float64",
"test_forward_mode_AD_nn_functional_rrelu_xpu_float64",
# RuntimeError: DispatchStub: unsupported device typexpu
"test_inplace_forward_mode_AD_conj_physical_xpu_complex128",
# NotImplementedError: Could not run 'aten::_to_dense' with arguments from the 'SparseXPU' backend.
# NotImplementedError: Could not run 'aten::_to_dense' with arguments from the 'SparseXPU' backend.
"test_fn_fwgrad_bwgrad_to_sparse_xpu_float64",
"test_forward_mode_AD_to_sparse_xpu_float64",
)
Expand Down Expand Up @@ -2745,9 +2740,6 @@ def launch_test(test_case, skip_list=None, exe_list=None):
### Error #7 in TestBwdGradientsXPU , totally 2 , NotImplementedError: Could not run 'aten::_sparse_coo_tensor_with_dims_and_tensors' with arguments from the 'SparseXPU' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'aten::_sparse_coo_tensor_with_dims_and_tensors' is only available for these backends: [XPU, Meta, SparseCPU, SparseMeta, BackendSelect, Python, FuncTorchDynamicLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradHIP, AutogradXLA, AutogradMPS, AutogradIPU, AutogradXPU, AutogradHPU, AutogradVE, AutogradLazy, AutogradMTIA, AutogradPrivateUse1, AutogradPrivateUse2, AutogradPrivateUse3, AutogradMeta, AutogradNestedTensor, Tracer, AutocastCPU, AutocastXPU, AutocastCUDA, FuncTorchBatched, BatchedNestedTensor, FuncTorchVmapMode, Batched, VmapMode, FuncTorchGradWrapper, PythonTLSSnapshot, FuncTorchDynamicLayerFrontMode, PreDispatch, PythonDispatcher].
"test_fn_grad_to_sparse_xpu_float64",
"test_fn_gradgrad_to_sparse_xpu_float64",
### Error #8 in TestBwdGradientsXPU , totally 2 , RuntimeError: DispatchStub: unsupported device typexpu
"test_inplace_grad_conj_physical_xpu_complex128",
"test_inplace_gradgrad_conj_physical_xpu_complex128",
)
res += launch_test("test_ops_gradients_xpu.py", skip_list)

Expand Down
1 change: 1 addition & 0 deletions test/xpu/xpu_test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,7 @@
"bincount",
"renorm",
"lerp",
"conj_physical",
]


Expand Down
2 changes: 2 additions & 0 deletions yaml/xpu_functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -502,6 +502,8 @@ supported:
- randperm.generator_out
- _amp_foreach_non_finite_check_and_unscale_
- _amp_update_scale_
- conj_physical.out
- conj_physical_
- ceil
- ceil_
- ceil.out
Loading