Skip to content

Commit

Permalink
Skip the cases for UT error (#1072)
Browse files Browse the repository at this point in the history
UT errors:
* test_autograd_xpu.py test_reentrant_parent_error_on_cpu_xpu:
AssertionError: "Simulate error" does not match "grad can be implicitly
created only for scalar outputs".
This error seems to be a random issue. Skip it first, and look forward
to the root cause continuing.
* align the class name skipIfMps to skipIfMPS with main branch.

---------

Signed-off-by: Cheng Penghui <[email protected]>
  • Loading branch information
PenghuiCheng authored Nov 14, 2024
1 parent 804a03b commit 8d6c604
Show file tree
Hide file tree
Showing 2 changed files with 46 additions and 43 deletions.
3 changes: 3 additions & 0 deletions test/xpu/skip_list_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1222,6 +1222,9 @@
# https://github.com/intel/torch-xpu-ops/issues/731
"test_profiler",
"test_record_function",
# Sometimes, will raise AssertionError: "Simulate error" does not match "grad can be implicitly created only for scalar outputs"
# https://github.com/intel/torch-xpu-ops/issues/1071
"test_reentrant_parent_error_on_cpu_xpu",
# Could not run 'aten::_thnn_fused_lstm_cell' with arguments from the 'CPU' backend.
"test_rnn_backward_to_input_but_not_parameters_xpu",
),
Expand Down
86 changes: 43 additions & 43 deletions test/xpu/test_torch_xpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@
skipCUDAMemoryLeakCheckIf, BytesIOContext,
skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName,
wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard,
skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like,
skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMPS, noncontiguous_like,
AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, TEST_XPU)
from multiprocessing.reduction import ForkingPickler
from torch.testing._internal.common_device_type import (
Expand Down Expand Up @@ -1107,7 +1107,7 @@ def test_is_set_to(self, device):
self.assertFalse(t2.is_set_to(t1))

# See https://github.com/pytorch/pytorch/issues/72650
@skipIfMps
@skipIfMPS
@skipMeta
@parametrize(
"fn",
Expand Down Expand Up @@ -1431,7 +1431,7 @@ def test_deterministic_empty(self, device, dtype):

# FIXME: update OpInfos to support "nondeterministic samples" and port these tests
# to that architecture
@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_AvgPool3d(self, device):
module = torch.nn.AvgPool3d(3)
Expand All @@ -1442,7 +1442,7 @@ def test_nondeterministic_alert_AvgPool3d(self, device):
self.check_device_nondeterministic_alert(grad, 'avg_pool3d_backward')


@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_AdaptiveAvgPool2d(self, device):
module = torch.nn.AdaptiveAvgPool2d(3)
Expand All @@ -1455,7 +1455,7 @@ def test_nondeterministic_alert_AdaptiveAvgPool2d(self, device):
'adaptive_avg_pool2d_backward_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_AdaptiveAvgPool3d(self, device):
module = torch.nn.AdaptiveAvgPool3d(3)
Expand All @@ -1468,7 +1468,7 @@ def test_nondeterministic_alert_AdaptiveAvgPool3d(self, device):
'adaptive_avg_pool3d_backward_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_MaxPool3d(self, device):
module = torch.nn.MaxPool3d(3)
Expand All @@ -1481,7 +1481,7 @@ def test_nondeterministic_alert_MaxPool3d(self, device):
'max_pool3d_with_indices_backward' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_AdaptiveMaxPool2d(self, device):
module = torch.nn.AdaptiveMaxPool2d(3)
Expand All @@ -1494,7 +1494,7 @@ def test_nondeterministic_alert_AdaptiveMaxPool2d(self, device):
'adaptive_max_pool2d_backward_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_FractionalMaxPool2d(self, device):
module = torch.nn.FractionalMaxPool2d(2, output_ratio=0.5)
Expand All @@ -1507,7 +1507,7 @@ def test_nondeterministic_alert_FractionalMaxPool2d(self, device):
'fractional_max_pool2d_backward_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_FractionalMaxPool3d(self, device):
module = torch.nn.FractionalMaxPool3d(2, output_ratio=0.5)
Expand Down Expand Up @@ -1562,7 +1562,7 @@ def test_nondeterministic_alert_MaxUnpool3d(self, device, dtype):
lambda: module(input, indices),
'max_unpooling3d_forward_out')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_interpolate_linear(self, device):
input = torch.randn(1, 2, 4, device=device, requires_grad=True)
Expand Down Expand Up @@ -1642,7 +1642,7 @@ def test_deterministic_interpolate_bilinear(self, device):
self.assertEqual(grad, input.grad, atol=0, rtol=0)
input.grad = None

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_interpolate_bicubic(self, device):
input = torch.randn(1, 2, 4, 4, device=device, requires_grad=True)
Expand All @@ -1658,7 +1658,7 @@ def test_nondeterministic_alert_interpolate_bicubic(self, device):
'upsample_bicubic2d_backward_out_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_interpolate_trilinear(self, device):
input = torch.randn(1, 2, 4, 4, 4, device=device, requires_grad=True)
Expand All @@ -1674,7 +1674,7 @@ def test_nondeterministic_alert_interpolate_trilinear(self, device):
'upsample_trilinear3d_backward_out_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_ReflectionPad1d(self, device):
module = torch.nn.ReflectionPad1d((1, 2))
Expand All @@ -1699,7 +1699,7 @@ def test_nondeterministic_alert_ReflectionPad2d(self, device):
'reflection_pad2d_backward_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_ReflectionPad3d(self, device):
module = torch.nn.ReflectionPad3d((1, 2, 3, 4, 5, 6))
Expand All @@ -1712,7 +1712,7 @@ def test_nondeterministic_alert_ReflectionPad3d(self, device):
'reflection_pad3d_backward_out_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_ReplicationPad1d(self, device):
module = torch.nn.ReplicationPad1d((1, 2))
Expand Down Expand Up @@ -1751,7 +1751,7 @@ def test_nondeterministic_alert_ReplicationPad2d(self, device):
'replication_pad2d_backward_cuda',
False)

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_ReplicationPad3d(self, device):
module = torch.nn.ReplicationPad3d((1, 2, 3, 4, 5, 6))
Expand Down Expand Up @@ -1844,7 +1844,7 @@ def test_nondeterministic_alert_put_accumulate(self, device):
'put_',
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
def test_nondeterministic_alert_histc(self, device):
a = torch.tensor([], device=device)
for op_call in [torch.histc, torch.Tensor.histc]:
Expand All @@ -1853,7 +1853,7 @@ def test_nondeterministic_alert_histc(self, device):
'_histc_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
def test_nondeterministic_alert_bincount(self, device):
a = torch.tensor([], device=device, dtype=torch.long)
weights = torch.tensor([], device=device)
Expand Down Expand Up @@ -1901,7 +1901,7 @@ def test_func(call_type):
'kthvalue CUDA',
torch.device(device).type == 'cuda')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_grid_sample_2d(self, device):
input = torch.empty(1, 1, 2, 2, device=device, requires_grad=True)
Expand All @@ -1914,7 +1914,7 @@ def test_nondeterministic_alert_grid_sample_2d(self, device):
'grid_sampler_2d_backward_' + torch.device(device).type,
torch.device(device).type == 'cuda' or torch.device(device).type == 'xpu')

@skipIfMps
@skipIfMPS
@skipIfTorchInductor("https://github.com/pytorch/pytorch/issues/113707")
def test_nondeterministic_alert_grid_sample_3d(self, device):
input = torch.empty(1, 1, 2, 2, 2, device=device, requires_grad=True)
Expand Down Expand Up @@ -2163,20 +2163,20 @@ def _cond_fn(x):


@dtypes(*floating_types_and(torch.half, torch.bfloat16))
@skipIfMps
@skipIfMPS
def test_log_normal(self, device, dtype):
a = torch.tensor([10], dtype=dtype, device=device).log_normal_()
self.assertEqual(a.dtype, dtype)
self.assertEqual(a.size(), torch.Size([1]))

@dtypes(*all_types_and(torch.half, torch.bfloat16))
@skipIfMps
@skipIfMPS
def test_geometric(self, device, dtype):
a = torch.tensor([10], dtype=dtype, device=device).geometric_(0.5)
self.assertEqual(a.dtype, dtype)
self.assertEqual(a.size(), torch.Size([1]))

@skipIfMps
@skipIfMPS
def test_repeat_interleave(self, device):
y = torch.tensor([[1, 2], [3, 4]], device=device)
# exercise single argument function signature
Expand Down Expand Up @@ -2267,7 +2267,7 @@ def test_bernoulli_edge_cases(self, device, dtype):
self.assertEqual(num_zeros, 0)

@dtypes(*floating_types_and(torch.half, torch.bfloat16))
@skipIfMps
@skipIfMPS
def test_exponential(self, device, dtype):
a = torch.tensor([10], dtype=dtype, device=device).exponential_(0.5)
self.assertEqual(a.dtype, dtype)
Expand Down Expand Up @@ -2356,7 +2356,7 @@ def test_normal_kstest(self, device, dtype):
res = stats.kstest(t.cpu().to(torch.double), 'norm', args=(mean, std))
self.assertTrue(res.statistic < 0.1)

@skipIfMps
@skipIfMPS
@skipIfNoSciPy
@skipRocmIfTorchInductor
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
Expand All @@ -2372,7 +2372,7 @@ def test_lognormal_kstest(self, device, dtype):
else:
self.assertTrue(res.statistic < 0.1)

@skipIfMps
@skipIfMPS
@skipIfNoSciPy
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
def test_exponential_kstest(self, device, dtype):
Expand All @@ -2383,7 +2383,7 @@ def test_exponential_kstest(self, device, dtype):
res = stats.kstest(t.cpu().to(torch.double), 'expon', args=(0, 1 / lambd,))
self.assertTrue(res.statistic < 0.1)

@skipIfMps
@skipIfMPS
@skipIfNoSciPy
@skipRocmIfTorchInductor
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
Expand Down Expand Up @@ -2420,7 +2420,7 @@ def test_cauchy(self, device, dtype):
with self.assertRaises(RuntimeError):
torch.empty((1,), device=device, dtype=dtype).cauchy_(0.0, 0.0)

@skipIfMps
@skipIfMPS
@skipIfNoSciPy
@skipRocmIfTorchInductor
@dtypes(*all_types_and(torch.half, torch.bfloat16))
Expand Down Expand Up @@ -2486,7 +2486,7 @@ def _brute_cdist(self, x, y, p=2):
return torch.empty(r1, r2, device=x.device)
return torch.norm(x[..., None, :] - y[..., None, :, :], p=p, dim=-1)

@skipIfMps
@skipIfMPS
def test_cdist_norm(self, device):
for r1 in [3, 4, 5, 6]:
for m in [2, 3, 4, 10]:
Expand All @@ -2504,7 +2504,7 @@ def test_cdist_norm(self, device):
expected = self._brute_cdist(x, y, p=p)
self.assertEqual(expected, actual)

@skipIfMps
@skipIfMPS
def test_cdist_norm_batch(self, device):
for r1 in [3, 4, 5, 6]:
for m in [2, 3, 4, 10]:
Expand Down Expand Up @@ -2643,7 +2643,7 @@ def _test_euclidean_large_cdist(sizex, sizey=None):
_test_euclidean_large_cdist((2000, 5))

# Ensure that cdist backward with p<1 does not produce NaNs
@skipIfMps
@skipIfMPS
def test_cdist_grad_p_lt_1_no_nan(self, device):
for p in [0.99, 0.7, 0.5, 0.1, 0.01]:
x = torch.randn(1, 2, device=device)
Expand Down Expand Up @@ -2671,7 +2671,7 @@ def test_cdist_same_inputs(self, device):
# values such as nan or inf
assert torch.isfinite(x.grad).all()

@skipIfMps
@skipIfMPS
def test_cumsum(self, device):
x = torch.rand(100, 100, device=device)
res1 = torch.cumsum(x, 1)
Expand Down Expand Up @@ -2722,7 +2722,7 @@ def test_cumsum(self, device):
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)

@skipIfMps
@skipIfMPS
def test_cumprod(self, device):
x = torch.rand(100, 100, device=device)
res1 = torch.cumprod(x, 1)
Expand Down Expand Up @@ -2774,7 +2774,7 @@ def test_cumprod(self, device):
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)

@skipIfMps
@skipIfMPS
def test_cummax_cummin(self, device):
def test_ops(op, string_of_function_name, expected_output1, expected_output2):
x = torch.rand(100, 100, device=device)
Expand Down Expand Up @@ -2841,7 +2841,7 @@ def test_ops(op, string_of_function_name, expected_output1, expected_output2):
[0, 0, 0],
[0, 0, 0]]), expected_out)

@skipIfMps
@skipIfMPS
def test_logcumsumexp(self, device):
def logcumsumexp(a, axis):
return torch.cumsum(a.exp(), axis=axis).log_()
Expand Down Expand Up @@ -3171,7 +3171,7 @@ def test_large_cumprod(self, device, dtype):
self._test_large_cum_fn_helper(x, lambda x: torch.cumprod(x, 0))

@skipIfTorchDynamo("Torchdynamo fails with unknown reason")
@skipIfMps
@skipIfMPS
def test_discontiguous_out_cumsum(self, device):
x = torch.randn(4, 8, device=device)
y = torch.empty(4, 16, device=device)[:, ::2]
Expand All @@ -3196,14 +3196,14 @@ def _test_cumminmax_helper(self, x, fn, expected_val, expected_ind):
self.assertEqual(out_val, expected_val, atol=0, rtol=0)
self.assertEqual(out_ind, expected_ind, atol=0, rtol=0)

@skipIfMps
@skipIfMPS
def test_cummax_discontiguous(self, device):
x = torch.tensor([[0, 1, 2, 3, 2, 1], [4, 5, 6, 5, 6, 7]], device=device, dtype=torch.float).t().contiguous().t()
expected_val = torch.tensor([[0, 1, 2, 3, 3, 3], [4, 5, 6, 6, 6, 7]], device=device, dtype=torch.float)
expected_ind = torch.tensor([[0, 1, 2, 3, 3, 3], [0, 1, 2, 2, 4, 5]], device=device, dtype=torch.long)
self._test_cumminmax_helper(x, torch.cummax, expected_val, expected_ind)

@skipIfMps
@skipIfMPS
def test_cummin_discontiguous(self, device):
x = torch.tensor([[3, 2, 1, 0, 1, 2], [7, 6, 5, 4, 5, 2]], device=device, dtype=torch.float).t().contiguous().t()
expected_val = torch.tensor([[3, 2, 1, 0, 0, 0], [7, 6, 5, 4, 4, 2]], device=device, dtype=torch.float)
Expand Down Expand Up @@ -3614,7 +3614,7 @@ def test_index_put_non_accumulate_deterministic(self, device) -> None:

# FIXME: move to test indexing
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
@skipIfMps
@skipIfMPS
def test_index_fill(self, device, dtype):
x = torch.tensor([[1, 2], [4, 5]], dtype=dtype, device=device)
index = torch.tensor([0], device=device)
Expand Down Expand Up @@ -3806,7 +3806,7 @@ def test_put_accumulate(self, device, dtype):
self.assertEqual(out, orig + source.sum(), rtol=rtol, atol=atol)

# FIXME: find a test suite for the take operator
@skipIfMps
@skipIfMPS
def test_take_empty(self, device):
for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
for indices_shape in [(0,), (0, 1, 2, 0)]:
Expand Down Expand Up @@ -4017,7 +4017,7 @@ def test_masked_scatter(self, device, dtype):
dest.masked_scatter_(mask, src)

# FIXME: find a test suite for the masked scatter operator
@skipIfMps
@skipIfMPS
def test_masked_scatter_bool_tensor(self, device):
src = torch.tensor([True, True, True], device=device)
dst = torch.tensor([False, False, False], device=device)
Expand Down Expand Up @@ -4876,7 +4876,7 @@ def _test_propagation_rules(self, contiguous, cl, ambiguous, bias):
result = ambiguous * 5
self.assertEqual(ambiguous.stride(), result.stride())

@skipIfMps
@skipIfMPS
def test_memory_format_empty_like(self, device):
def test_helper(x, memory_format):
xc = x.contiguous(memory_format=memory_format)
Expand Down Expand Up @@ -5346,7 +5346,7 @@ def run(num_threads, num_parallel, skip_first, should_error):
run(10, 2, True, True)

# FIXME: move to test distributions
@skipIfMps
@skipIfMPS
@dtypesIfCUDA(torch.float, torch.double, torch.half)
@dtypes(torch.float, torch.double, torch.half)
def test_multinomial(self, device, dtype):
Expand Down

0 comments on commit 8d6c604

Please sign in to comment.