Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add an e2e test for XeTile gather/scatter on SLM #988

Merged
merged 1 commit into from
Dec 17, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 122 additions & 0 deletions test/Integration/Dialect/XeTile/sg_gather_scatter_slm.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
// RUN: IMEX_USE_IGC_VECTOR_BACK_END=1 %python_executable %imex_runner --requires=l0-runtime -i %s --pass-pipeline-file=%p/xetile-to-func-vc.pp \
// RUN: --runner imex-cpu-runner -e main \
// RUN: --entry-point-result=void \
// RUN: --shared-libs=%irunner_utils,%mlir_runner_utils,%mlir_c_runner_utils,%levelzero_runtime --filecheck
// RUN: IMEX_USE_IGC_VECTOR_BACK_END=1 %python_executable %imex_runner --requires=sycl-runtime -i %s --pass-pipeline-file=%p/xetile-to-func-vc.pp \
// RUN: --runner imex-cpu-runner -e main \
// RUN: --entry-point-result=void \
// RUN: --shared-libs=%irunner_utils,%mlir_runner_utils,%mlir_c_runner_utils,%sycl_runtime --filecheck

// NOTES :
// This example assumes one subgroup per one workgroup and the kernel specifies the computation
// done by a single subgroup.

module @gemm attributes {gpu.container_module} {
// a test case case return the transpose of A, which is viewed as memref<32x32xf16>.
// it uses one workgroup containing 32 subgroups, organized as (8x4), so each subgroup
// works on a 4x8 tile of A. It used SLM to do the transpose, to evaluate the functionality
// of the SLM operations.
func.func @test(%A: memref<32x32xf16>) -> memref<32x32xf16> attributes {llvm.emit_c_interface} {
%c1 = arith.constant 1 : index
%c4 = arith.constant 4 : index
%c8 = arith.constant 8 : index
%A_gpu = gpu.alloc host_shared () : memref<32x32xf16>
memref.copy %A, %A_gpu : memref<32x32xf16> to memref<32x32xf16>
%B_gpu = gpu.alloc host_shared () : memref<32x32xf16>
gpu.launch_func @test_kernel::@trans_kernel blocks in (%c1, %c1, %c1) threads in (%c4, %c8, %c1) args(%A_gpu : memref<32x32xf16>, %B_gpu : memref<32x32xf16>)
gpu.dealloc %A_gpu : memref<32x32xf16>
return %B_gpu : memref<32x32xf16>
}
gpu.module @test_kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL, Bfloat16ConversionINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute, SPV_INTEL_bfloat16_conversion]>, api=OpenCL, #spirv.resource_limits<>>} {
gpu.func @trans_kernel(%A: memref<32x32xf16>, %B: memref<32x32xf16>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%c8 = arith.constant 8 : index
%c128 = arith.constant 128 : index
%c256 = arith.constant 256 : index

%sgid = gpu.subgroup_id : index
// %tid_y = arith.divui %sgid, %c4 : index
// %tid_x = arith.remui %sgid, %c4 : index
%tid_y = arith.shrui %sgid, %c2 : index
%tid_x = arith.andi %sgid, %c3 : index

%off_y = arith.muli %tid_y, %c4 : index
%off_x = arith.muli %tid_x, %c8 : index

// load data from global memory using block load
%a_tile = xetile.init_tile %A[%off_y, %off_x] : memref<32x32xf16> -> !xetile.tile<4x8xf16>
%data = xetile.load_tile %a_tile : !xetile.tile<4x8xf16> -> vector<4x8xf16>

%slm = memref.alloc() : memref<32x32xf16, 3>
%cast = memref.reinterpret_cast %slm to offset: [0], sizes: [1024], strides: [1] : memref<32x32xf16, 3> to memref<1024xf16, 3>
%mask = arith.constant dense<true>: vector<4x8xi1>

// store data to slm using original layout
%base_indices = arith.constant dense<[[0, 1, 2, 3, 4, 5, 6, 7],
[32, 33, 34, 35, 36, 37, 38, 39],
[64, 65, 66, 67, 68, 69, 70, 71],
[96, 97, 98, 99, 100, 101, 102, 103]]>: vector<4x8xindex>
%off_y2 = arith.muli %tid_y, %c128 : index
%offset = arith.addi %off_y2, %off_x : index
%offsets = vector.splat %offset: vector<4x8xindex>
%indices = arith.addi %base_indices, %offsets : vector<4x8xindex>
%st_tile = xetile.init_tile %cast, %indices : memref<1024xf16, 3>, vector<4x8xindex> -> !xetile.tile<4x8xf16, #xetile.tile_attr<scattered = true, memory_space=3>>
xetile.store %data, %st_tile, %mask : vector<4x8xf16>, !xetile.tile<4x8xf16, #xetile.tile_attr<scattered = true, memory_space=3>>, vector<4x8xi1>

gpu.barrier

// load data from slm using indices with transpose effects
%trans_base_indices = arith.constant dense<[[0, 32, 64, 96, 128, 160, 192, 224],
[1, 33, 65, 97, 129, 161, 193, 225],
[2, 34, 66, 98, 130, 162, 194, 226],
[3, 35, 67, 99, 131, 163, 195, 227]]>: vector<4x8xindex>

%trans_off_x = arith.muli %tid_x, %c256 : index
%trans_off_y = arith.muli %tid_y, %c4 : index
%trans_off = arith.addi %trans_off_x, %trans_off_y : index
%trans_offsets = vector.splat %trans_off: vector<4x8xindex>
%trans_indices = arith.addi %trans_base_indices, %trans_offsets : vector<4x8xindex>
%ld_tile = xetile.init_tile %cast, %trans_indices : memref<1024xf16, 3>, vector<4x8xindex> -> !xetile.tile<4x8xf16, #xetile.tile_attr<scattered = true, memory_space=3>>
%d = xetile.load %ld_tile, %mask : !xetile.tile<4x8xf16, #xetile.tile_attr<scattered = true, memory_space=3>>, vector<4x8xi1> -> vector<4x8xf16>

%b_tile = xetile.init_tile %B[%off_y, %off_x] : memref<32x32xf16> -> !xetile.tile<4x8xf16>
xetile.store_tile %d, %b_tile: vector<4x8xf16>, !xetile.tile<4x8xf16>
gpu.return
}
}
func.func @main() attributes {llvm.emit_c_interface} {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c32 = arith.constant 32 : index
%cf_0 = arith.constant 0.0 : bf16
%cf_1 = arith.constant 1.0 : bf16
%A = memref.alloc() : memref<32x32xf16>
%Ref = memref.alloc() : memref<32x32xf32>
// intialize matrix A ;
scf.for %i = %c0 to %c32 step %c1 {
scf.for %j = %c0 to %c32 step %c1 {
%m = arith.muli %i, %c32 : index
%a = arith.addi %m, %j : index
%v = index.castu %a : index to i16
%val = arith.uitofp %v : i16 to f16
memref.store %val, %A[%i, %j] : memref<32x32xf16>
%v32 = index.castu %a : index to i32
%val32 = arith.uitofp %v32 : i32 to f32
memref.store %val32, %Ref[%j, %i] : memref<32x32xf32>
}
}
%B = call @test(%A) : (memref<32x32xf16>) -> memref<32x32xf16>
%cast = memref.cast %B : memref<32x32xf16> to memref<*xf16>
%Ref_cast = memref.cast %Ref : memref<32x32xf32> to memref<*xf32>
//CHECK: [ALLCLOSE: TRUE]
call @printAllcloseF16(%cast, %Ref_cast) : (memref<*xf16>, memref<*xf32>) -> ()
memref.dealloc %A : memref<32x32xf16>
memref.dealloc %Ref : memref<32x32xf32>
return
}
func.func private @printMemrefF16(memref<*xf16>) attributes {llvm.emit_c_interface}
func.func private @printAllcloseF16(memref<*xf16>, memref<*xf32>) attributes {llvm.emit_c_interface}
}
Loading