Skip to content

Commit

Permalink
Merge branch 'main' of https://github.com/hilldani/PerfSpect into main
Browse files Browse the repository at this point in the history
  • Loading branch information
hilldani committed Oct 3, 2023
2 parents f43c28b + 5111509 commit 1441853
Show file tree
Hide file tree
Showing 7 changed files with 69 additions and 64 deletions.
33 changes: 10 additions & 23 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,29 +59,16 @@ Modify the template [deamonset.yml](docs/daemonset.yml) to deploy in kubernetes

## Requirements

### Packages:

- **perf** - PerfSpect uses the Linux perf tool to collect PMU counters

### Minimum supported kernels

| Xeon Generation | CentOS 7+ | Ubuntu 16.04+ |
| --------------- | --------- | ------------- |
| Broadwell | 3.10 | 4.15 |
| Skylake | 3.10 | 4.15 |
| Cascade Lake | 3.10 | 4.15 |
| Ice Lake | 3.10 | 4.15 |
| Sapphire Rapids | 5.12 | 5.12 |

### Supported Operating Systems:

- Ubuntu 16.04 and newer
- CentOS 7 and newer
- Amazon Linux 2
- RHEL 9
- Debian 11

_Note: PerfSpect may work on other Linux distributions, but has not been thoroughly tested_
**perf** - PerfSpect uses the Linux perf tool to collect PMU counters

Different events require different minimum kernels (PerfSpect will automatically collect only supported events)
1. Base (CPU util, CPI, Cache misses, etc.)
- 3.10
2. Uncore (NUMA traffic, DRAM traffic, etc.)
- 4.9
3. TMA (Micro-architecture boundness breakdown)
- ICX, SPR: 5.10
- BDX, SKX, CLX: 3.10

## Build from source

Expand Down
2 changes: 1 addition & 1 deletion _version.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.3.5
1.3.6
15 changes: 6 additions & 9 deletions perf-collect.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,14 +369,7 @@ def validate_file(fname):
)
events, collection_events = prep_events.prepare_perf_events(
eventfile,
(
args.pid is not None
or args.cid is not None
or args.cpu
or args.socket
or not have_uncore
),
args.pid is not None or args.cid is not None,
(args.pid is not None or args.cid is not None or not have_uncore),
include_tma,
not have_uncore,
)
Expand All @@ -388,14 +381,17 @@ def validate_file(fname):

mux_intervals = perf_helpers.get_perf_event_mux_interval()
if args.muxinterval > 0:
logging.info(
"changing default perf mux interval to " + str(args.muxinterval) + "ms"
)
perf_helpers.set_perf_event_mux_interval(False, args.muxinterval, mux_intervals)

# parse cgroups
cgroups = []
if args.cid is not None:
cgroups = perf_helpers.get_cgroups(args.cid)

if args.cpu or args.socket or args.pid is not None or args.cid is not None:
if args.pid is not None or args.cid is not None:
logging.info("Not collecting uncore events in this run mode")

# log some metadata
Expand Down Expand Up @@ -481,6 +477,7 @@ def validate_file(fname):
if nmi_watchdog != 0:
perf_helpers.enable_nmi_watchdog()

logging.info("changing perf mux interval back to default")
perf_helpers.set_perf_event_mux_interval(True, 1, mux_intervals)

logging.info("perf stat dumped to %s" % args.outcsv)
53 changes: 38 additions & 15 deletions perf-postprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,15 +515,14 @@ def extract_dataframe(perf_data_lines, meta_data, perf_mode):
axis=1,
)

if perf_mode != Mode.CPU and perf_mode != Mode.Socket:
# fix metric name X.1, X.2, etc -> just X
# we don't need this in cpu/socket modes
perf_data_df["metric"] = perf_data_df.apply(
lambda x: ".".join(x["metric"].split(".")[:-1])
if len(re.findall(r"^[0-9]*$", x["metric"].split(".")[-1])) > 0
else x["metric"],
axis=1,
)
# fix metric name X.1, X.2, etc -> just X
perf_data_df["metric"] = perf_data_df.apply(
lambda x: ".".join(x["metric"].split(".")[:-1])
if len(re.findall(r"^[0-9]*$", x["metric"].split(".")[-1])) > 0
else x["metric"],
axis=1,
)

# set data frame types
perf_data_df["value"] = pd.to_numeric(
perf_data_df["value"], errors="coerce"
Expand Down Expand Up @@ -930,6 +929,21 @@ def generate_metrics(
verbose=False,
fail_postprocessing=False,
):
# filter out uncore metrics if in cpu or socket mode
filtered_metrics = []
for m in metrics:
if perf_mode == Mode.CPU or perf_mode == Mode.Socket:
if any(
[
e.startswith("power/")
or e.startswith("cstate_")
or e.startswith("UNC_")
for e in m["events"]
]
):
continue
filtered_metrics.append(m)

time_slice_groups = perf_data_df.groupby("ts", sort=False)
time_metrics_result = {}
errors = {
Expand All @@ -940,7 +954,19 @@ def generate_metrics(
"NOT COUNTED GROUPS": set(),
}
prev_time_slice = 0
logging.info("processing " + str(time_slice_groups.ngroups) + " samples")
logging.info(
"processing "
+ str(time_slice_groups.ngroups)
+ " samples in "
+ (
"System"
if perf_mode == Mode.System
else "CPU"
if perf_mode == Mode.CPU
else "Socket"
)
+ " mode"
)
group_start_end_index_dict = {}
for time_slice, item in time_slice_groups:
time_slice_float = float(time_slice)
Expand All @@ -965,7 +991,7 @@ def generate_metrics(
)

time_metrics_result[time_slice] = evaluate_metrics(
verbose, metrics, metadata, group_to_event, group_to_df, errors
verbose, filtered_metrics, metadata, group_to_event, group_to_df, errors
)

time_series_df = pd.DataFrame(time_metrics_result).reindex(
Expand Down Expand Up @@ -1159,9 +1185,6 @@ def generate_raw_events(perf_data_df, out_file_path, perf_mode):
args.verbose,
args.fail_postprocessing,
)
logging.info(
"Generated results file(s) in: " + out_file_path.rsplit("/", 1)[0]
)
else:
generate_metrics(
perf_data_df,
Expand All @@ -1188,5 +1211,5 @@ def generate_raw_events(perf_data_df, out_file_path, perf_mode):
args.fail_postprocessing,
)

logging.info("Generated results file(s) in: " + out_file_path.rsplit("/", 1)[0])
logging.info("Generated results file(s) in: " + out_file_path.rsplit("/", 1)[0])
logging.info("Done!")
2 changes: 1 addition & 1 deletion similarity-analyzer/dopca.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ def handle_nan(data, comp_size):
if len(deleted_row_indices) in (comp_size, comp_size - 1):
# too many workload profiles have NaN greater than threshold, must quit similarity analysis
logger.error(
"Attempted dropping of NaNs resulted in fewer #input profiles without NaN....quiting similarity analysis"
"Attempted dropping of NaNs resulted in fewer #input profiles without NaN....quitting similarity analysis"
)
sys.exit(1)
logger.warning(
Expand Down
20 changes: 10 additions & 10 deletions src/base.html
Original file line number Diff line number Diff line change
Expand Up @@ -785,24 +785,24 @@
key={row.metrics}
sx={{ '&:last-child td, &:last-child th': { border: 0 } }}
>
<TableCell component="th" scope="row" >
<TableCell sx={{ fontFamily: 'Monospace' }} component="th" scope="row" >
<Tooltip title={description.hasOwnProperty(row.metrics) ? description[row.metrics] : ""}>
{description.hasOwnProperty(row.metrics) && <IconButton>
{description.hasOwnProperty(row.metrics) && <IconButton sx={{ padding: "0 8px 0 0" }}>
<Icon>help</Icon>
</IconButton>}
{!description.hasOwnProperty(row.metrics) && <IconButton disabled>
{!description.hasOwnProperty(row.metrics) && <IconButton sx={{ padding: "0 8px 0 0" }} disabled>
<Icon>help</Icon>
</IconButton>}
</Tooltip>
{row.metrics}
{(row.metrics.startsWith("metric_") ? row.metrics.replace("metric_", "") : row.metrics).replaceAll("_", " ")}
</TableCell>
<TableCell align="right">
{Number(row["0"]).toFixed(1)}
<TableCell sx={{ fontFamily: 'Monospace' }} align="right">
{Number(row["0"]).toFixed(4)}
</TableCell>
{row.hasOwnProperty("other") && <TableCell align="right">
{Number(row["other"]).toFixed(1)}
{row.hasOwnProperty("other") && <TableCell sx={{ fontFamily: 'Monospace' }} align="right">
{Number(row["other"]).toFixed(4)}
</TableCell>}
{row.hasOwnProperty("other") && <TableCell align="right" sx={{ backgroundColor: (row.diff > 0 ? "rgba(255,0,0," + (row.diff / maxdiff * .5) + ")" : "rgba(0,0,255," + (row.diff / mindiff * .5) + ")") }}>
{row.hasOwnProperty("other") && <TableCell align="right" sx={{ fontFamily: 'Monospace', backgroundColor: (row.diff > 0 ? "rgba(255,0,0," + (row.diff / maxdiff * .5) + ")" : "rgba(0,0,255," + (row.diff / mindiff * .5) + ")") }}>
{Math.round(Number(row["diff"]))}%
</TableCell>}
</TableRow>
Expand All @@ -827,4 +827,4 @@
</script>
</body>

</html>
</html>
8 changes: 3 additions & 5 deletions src/prepare_perf_events.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def get_cgroup_events_format(cgroups, events, num_events):
return perf_format


def filter_events(event_file, cpu_only, PID_CID_mode, TMA_supported, in_vm):
def filter_events(event_file, cpu_only, TMA_supported, in_vm):
if not os.path.isfile(event_file):
crash("event file not found")
collection_events = []
Expand All @@ -135,8 +135,6 @@ def process(line):
line = line.strip()
if line == "" or line.startswith("#") or (cpu_only and not is_cpu_event(line)):
return
if PID_CID_mode and line.startswith("cstate_"):
return
if not TMA_supported and (
"name='TOPDOWN.SLOTS'" in line or "name='PERF_METRICS." in line
):
Expand Down Expand Up @@ -165,15 +163,15 @@ def process(line):
return collection_events, unsupported_events


def prepare_perf_events(event_file, cpu_only, PID_CID_mode, TMA_supported, in_vm):
def prepare_perf_events(event_file, cpu_only, TMA_supported, in_vm):
start_group = "'{"
end_group = "}'"
group = ""
prev_group = ""
new_group = True

collection_events, unsupported_events = filter_events(
event_file, cpu_only, PID_CID_mode, TMA_supported, in_vm
event_file, cpu_only, TMA_supported, in_vm
)
core_event = []
uncore_event = []
Expand Down

0 comments on commit 1441853

Please sign in to comment.