Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add n_rate statistic to estimate_incidence_rate() #1295

Merged
merged 9 commits into from
Sep 5, 2024

Conversation

edelarua
Copy link
Contributor

@edelarua edelarua commented Sep 3, 2024

Pull Request

Fixes #1294

@edelarua edelarua added the sme label Sep 3, 2024
Copy link
Contributor

github-actions bot commented Sep 3, 2024

Unit Tests Summary

    1 files     83 suites   1m 10s ⏱️
  850 tests   838 ✅  12 💤 0 ❌
1 828 runs  1 150 ✅ 678 💤 0 ❌

Results for commit 7db0da2.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Sep 3, 2024

Unit Test Performance Difference

Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
estimate_incidence_rate 👶 $+0.11$ estimate_incidence_rate_n_rate_statistic_works_as_expected

Results for commit 5e4f7b1

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Sep 3, 2024

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      65       0  100.00%
R/abnormal_by_marked.R                        55       5  90.91%   78-82
R/abnormal_by_worst_grade_worsen.R           116       3  97.41%   242-244
R/abnormal_by_worst_grade.R                   60       0  100.00%
R/abnormal.R                                  43       0  100.00%
R/analyze_variables.R                        162       3  98.15%   488, 512, 628
R/analyze_vars_in_cols.R                     176      33  81.25%   179, 202-207, 222, 236-237, 245-253, 259-265, 344-350
R/bland_altman.R                              92       1  98.91%   43
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         84       5  94.05%   130-134, 246, 305
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          50       1  98.00%   67
R/count_missed_doses.R                        34       0  100.00%
R/count_occurrences_by_grade.R               113       5  95.58%   101, 151-153, 156
R/count_occurrences.R                        115       1  99.13%   108
R/count_patients_events_in_cols.R             67       1  98.51%   53
R/count_patients_with_event.R                 47       0  100.00%
R/count_patients_with_flags.R                 58       4  93.10%   56-57, 62-63
R/count_values.R                              27       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            113       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  50       1  98.00%   63
R/estimate_proportion.R                      205      12  94.15%   78-85, 89, 94, 315, 481, 587
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   143, 278
R/g_forest.R                                 585      60  89.74%   241, 253-256, 261-262, 276, 278, 288-291, 336-339, 346, 415, 502, 515, 519-520, 525-526, 539, 555, 602, 633, 708, 717, 723, 742, 797-817, 820, 831, 850, 905, 908, 1043-1048
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   286-289, 308-310, 364-367, 401, 429, 433-476, 483-487
R/g_lineplot.R                               249      23  90.76%   196, 370-377, 416-426, 518, 524, 526
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    46       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           90      12  86.67%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           88       6  93.18%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       2  88.24%   54-55
R/incidence_rate.R                           100       7  93.00%   45-52
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               109       0  100.00%
R/prop_diff_test.R                            91       0  100.00%
R/prop_diff.R                                265      16  93.96%   62-65, 97, 282-289, 432, 492, 597
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             69       6  91.30%   192-197
R/response_subgroups.R                       213      12  94.37%   95-100, 255-256, 331, 382-384
R/riskdiff.R                                  65       7  89.23%   102-105, 114, 124-125
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       3  94.92%   73-74, 129
R/summarize_ancova.R                         106       2  98.11%   174, 179
R/summarize_change.R                          30       0  100.00%
R/summarize_colvars.R                         10       0  100.00%
R/summarize_coxreg.R                         172       2  98.84%   203, 430
R/summarize_glm_count.R                      209      27  87.08%   192-193, 307, 463-495
R/summarize_num_patients.R                    93       5  94.62%   108-110, 244-245
R/summarize_patients_exposure_in_cols.R       96       1  98.96%   42
R/survival_biomarkers_subgroups.R             78       6  92.31%   113-118
R/survival_coxph_pairwise.R                   79      11  86.08%   45-46, 58-66
R/survival_duration_subgroups.R              211       6  97.16%   119-124
R/survival_time.R                             79       0  100.00%
R/survival_timepoint.R                       113       7  93.81%   120-126
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       124       1  99.19%   72
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_ggplot.R                             110       0  100.00%
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            100       9  91.00%   39, 46, 51, 58-62, 403-404
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      10485     553  94.73%

Diff against main

Filename              Stmts    Miss  Cover
------------------  -------  ------  -------
R/incidence_rate.R       +4       0  +0.29%
TOTAL                    +4       0  +0.00%

Results for commit: 7db0da2

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

@Melkiades Melkiades left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks Emily!! lgtm ;)

@edelarua edelarua enabled auto-merge (squash) September 5, 2024 14:42
@edelarua edelarua merged commit 6b41d95 into main Sep 5, 2024
27 checks passed
@edelarua edelarua deleted the 1294_n_rate_est_incidence@main branch September 5, 2024 14:53
@github-actions github-actions bot locked and limited conversation to collaborators Sep 5, 2024
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Add n_rate statistic to estimate_incidence_rate()
2 participants