Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: Faster single bracket querying of a graph #1658

Merged
merged 17 commits into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 102 additions & 30 deletions R/indexing.R
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,60 @@
# - G[1:3,2,eid=TRUE]
# create an edge sequence

get_adjacency_submatrix <- function(x, i, j, attr = NULL) {
# If i or j is NULL, assume all nodes
# if not NULL make sure to handle duplicates correctly
if (missing(i)) {
i_seq <- seq_len(vcount(x))
has_i <- FALSE
} else{
i_seq <- i
has_i <- TRUE
}
if (missing(j)) {
j_seq <- seq_len(vcount(x))
has_j <- FALSE
} else {
j_seq <- j
has_j <- TRUE
}

adj <- adjacent_vertices(x, i_seq, mode = "out")
i_degree <- map_int(adj, length)

from_id <- rep(i_seq, i_degree)
to_id <- unlist(adj)

edge_list <- data.frame(from = as.integer(from_id), to = as.integer(to_id))
if(has_j){
edge_list <- edge_list[edge_list$to %in% j_seq, ]
}

row_indices <- edge_list[[1]]
col_indices <- edge_list[[2]]

values <- if (is.null(attr)) {
1
} else {
valid_edges <- get_edge_ids(x, edge_list)
edge_attr(x, attr, valid_edges)
}

res <- Matrix::sparseMatrix(
i = if (has_i) match(row_indices, i_seq) else row_indices,
j = if (has_j) match(col_indices, j_seq) else col_indices,
x = values,
dims = c(length(i_seq), length(j_seq))
)

if ("name" %in% vertex_attr_names(x) && !is.null(dim(res))) {
rownames(res) <- vertex_attr(x, "name", i_seq)
colnames(res) <- vertex_attr(x, "name", j_seq)
}

res
}


#' Query and manipulate a graph as it were an adjacency matrix
#'
Expand Down Expand Up @@ -151,12 +205,11 @@
#'
#' @method [ igraph
#' @export
`[.igraph` <- function(x, i, j, ..., from, to,
sparse = igraph_opt("sparsematrices"),
edges = FALSE, drop = TRUE,
attr = if (is_weighted(x)) "weight" else NULL) {
## TODO: make it faster, don't need the whole matrix usually

`[.igraph` <- function(
x, i, j, ..., from, to,
sparse = igraph_opt("sparsematrices"),
edges = FALSE, drop = TRUE,
attr = if (is_weighted(x)) "weight" else NULL) {
################################################################
## Argument checks
if ((!missing(from) || !missing(to)) &&
Expand All @@ -182,7 +235,7 @@
##################################################################

if (!missing(from)) {
res <- get_edge_ids(x, rbind(from, to), error = FALSE)
res <- get_edge_ids(x, data.frame(from, to), error = FALSE)
if (edges) {
## nop
} else if (!is.null(attr)) {
Expand All @@ -192,32 +245,51 @@
} else {
res <- as.logical(res) + 0
}
res
} else if (missing(i) && missing(j)) {
if (missing(edges)) {
as_adjacency_matrix(x, sparse = sparse, attr = attr)
} else {
as_adjacency_matrix(x, sparse = sparse, attr = attr, edges = edges)
}
} else if (missing(j)) {
if (missing(edges)) {
as_adjacency_matrix(x, sparse = sparse, attr = attr)[i, , drop = drop]
} else {
as_adjacency_matrix(x, sparse = sparse, attr = attr, edges = edges)[i, , drop = drop]
}
} else if (missing(i)) {
if (missing(edges)) {
as_adjacency_matrix(x, sparse = sparse, attr = attr)[, j, drop = drop]
} else {
as_adjacency_matrix(x, sparse = sparse, attr = attr, edges = edges)[, j, drop = drop]
return(res)
}

if (missing(i) && missing(j)) {
return(as_adjacency_matrix(x, sparse = sparse, attr = attr))
}

# convert logical, character or negative i/j to proper vertex ids
# also check if any vertex is duplicated and record a mapping
i_has_dupes <- FALSE
j_has_dupes <- FALSE

if (!missing(i)) {
i <- as_igraph_vs(x, i)
if (anyDuplicated(i)) {
i_has_dupes <- TRUE
i_dupl <- i
i <- unique(i)
i_map <- match(i_dupl, i)
}
} else {
if (missing(edges)) {
as_adjacency_matrix(x, sparse = sparse, attr = attr)[i, j, drop = drop]
} else {
as_adjacency_matrix(x, sparse = sparse, attr = attr, edges = edges)[i, j, drop = drop]
}
if (!missing(j)) {
j <- as_igraph_vs(x, j)
if (anyDuplicated(j)) {
j_has_dupes <- TRUE
j_dupl <- j
j <- unique(j)
j_map <- match(j_dupl, j)
}
}

sub_adjmat <- get_adjacency_submatrix(x, i = i, j = j, attr = attr)
if (i_has_dupes) {
sub_adjmat <- sub_adjmat[i_map, , drop = FALSE]
}
if (j_has_dupes) {
sub_adjmat <- sub_adjmat[, j_map, drop = FALSE]
}
schochastics marked this conversation as resolved.
Show resolved Hide resolved

if (!sparse) {
as.matrix(sub_adjmat[, , drop = drop])
} else{
sub_adjmat[, , drop = drop]
}

}

#' Query and manipulate a graph as it were an adjacency list
Expand Down
51 changes: 51 additions & 0 deletions tests/testthat/test-indexing.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
test_that("[ indexing works", {
skip_if_not_installed("Matrix", minimum_version = "1.6.0")
g <- make_tree(20)
## Are these vertices connected?
expect_equal(g[1, 2], 1)
Expand All @@ -9,6 +10,7 @@ test_that("[ indexing works", {
})

test_that("[ indexing works with symbolic names", {
skip_if_not_installed("Matrix", minimum_version = "1.6.0")
g <- make_test_named_tree()

expect_equal(g["a", "b"], 1)
Expand All @@ -28,6 +30,7 @@ test_that("[ indexing works with symbolic names", {
})

test_that("[ indexing works with logical vectors", {
skip_if_not_installed("Matrix", minimum_version = "1.6.0")
g <- make_test_named_tree()

lres <- structure(
Expand Down Expand Up @@ -70,6 +73,7 @@ test_that("[ indexing works with negative indices", {
})

test_that("[ indexing works with weighted graphs", {
skip_if_not_installed("Matrix", minimum_version = "1.6.0")
g <- make_test_weighted_tree()

expect_equal(g[1, 2], 2)
Expand All @@ -83,6 +87,7 @@ test_that("[ indexing works with weighted graphs", {
})

test_that("[ indexing works with weighted graphs and symbolic names", {
skip_if_not_installed("Matrix", minimum_version = "1.6.0")
g <- make_test_weighted_tree()

expect_equal(g["a", "b"], 2)
Expand Down Expand Up @@ -294,3 +299,49 @@ test_that("[[ handles from and to properly even if the graph has conflicting ver
expect_true(is_igraph_vs(g[[1:3, 2:6]][[1]]))
expect_true(is_igraph_vs(g[[from = 1:3, to = 2:6]][[1]]))
})

test_that("[ handles errors in input parameters well", {
g <- make_full_graph(10)
expect_error(g[from = 1, to = 1, i = 1, j = 1])
expect_error(g[from = 1])
expect_error(g[to = 1])
expect_error(g[from = NA, to = 2])
expect_error(g[from = 1, to = NA])
expect_error(g[from = 1, to = c(1, 2)])
})

test_that("[ handles all combinations of i and/or j", {
A <- matrix(
rep(
c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0),
c(
4L, 1L, 4L, 1L, 2L, 1L, 5L, 2L, 3L, 1L, 10L, 3L, 9L, 1L, 1L, 1L, 3L, 1L, 1L,
1L, 1L, 1L, 10L, 1L, 1L, 1L, 1L, 5L, 11L, 1L, 2L, 1L, 5L, 1L, 3L
)
),
nrow = 10L,
ncol = 10L
)
g <- graph_from_adjacency_matrix(A, "directed")
expect_equal(canonicalize_matrix(g[1:3, ]), A[1:3, ])
expect_equal(canonicalize_matrix(g[, 4:7]), A[, 4:7])
expect_equal(canonicalize_matrix(g[1:3, 4:7]), A[1:3, 4:7])
})

test_that("[ handles duplicated i/j well", {
A <- matrix(
rep(
c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0),
c(
4L, 1L, 4L, 1L, 2L, 1L, 5L, 2L, 3L, 1L, 10L, 3L, 9L, 1L, 1L, 1L, 3L, 1L, 1L,
1L, 1L, 1L, 10L, 1L, 1L, 1L, 1L, 5L, 11L, 1L, 2L, 1L, 5L, 1L, 3L
)
),
nrow = 10L,
ncol = 10L
)
g <- graph_from_adjacency_matrix(A, "directed")
expect_equal(canonicalize_matrix(g[c(1, 2, 2), ]), A[c(1, 2, 2), ])
schochastics marked this conversation as resolved.
Show resolved Hide resolved
expect_equal(canonicalize_matrix(g[, c(3, 3, 4, 4)]), A[, c(3, 3, 4, 4)])
expect_equal(canonicalize_matrix(g[c(1, 2, 2), c(3, 3, 4, 4)]), A[c(1, 2, 2), c(3, 3, 4, 4)])
})
Loading