Using Pytorch as a framework, based on Linear model,ResNet18 or MobileNetV2
-
Data preparation:
- Run
python ./Data/ODATA/linear.py
- Run
-
Training steps:
- Run
tensorboard --logdir=/home/kenny/Desktop/Face-Alignment/CheckPoints/tensorboard_linear &
- Run
python Train_linear.py -h
get usage - Run default parms
python Train_linear.py
- Checkpoint
checkpoint_epoch_x.pth.tar
in./CheckPoints/snapshot_linear/
- You can get training log file from
./CheckPoints/train_linear.logs
- Run
-
Testing steps:
- Run
python Test_linear.py -h
get usage - Run default parms
python Test_linear.py
- Run
-
Data preparation:
- Run
python ./Data/ODATA/resnet.py
- Run
-
Training steps:
- Run
tensorboard --logdir=/home/kenny/Desktop/Face-Alignment/CheckPoints/tensorboard_resnet &
- Run
python Train_resnet.py -h
get usage - Run default parms
python Train_resnet.py
- Checkpoint
checkpoint_epoch_x.pth.tar
in./CheckPoints/snapshot_resnet/
- You can get training log file from
./CheckPoints/train_resnet.logs
- Run
-
Testing steps:
- Run
python Test_resnet.py -h
get usage - Run default parms
python Test_resnet.py
- Run
-
Data preparation:
- Run
python ./Data/ODATA/pfld.py
- Run
-
Training steps:
- Run
tensorboard --logdir=/home/kenny/Desktop/Face-Alignment/CheckPoints/tensorboard_pfld &
- Run
python Train_pfld.py -h
get usage - Run default parms
python Train_pfld.py
- Checkpoint
checkpoint_epoch_x.pth.tar
in./CheckPoints/snapshot_pfld/
- You can get training log file from
./CheckPoints/train_pfld.logs
- Run
-
Testing steps:
- Run
python Test_pfld.py -h
get usage - Run default parms
python Test_pfld.py
- Run