1. Python2.7
1. Pyevolve==0.6rc1
2. matplotlib==2.0.0
3. numpy==1.12.1
4. pandas==0.18.1
1. pip install -r requirements.txt
2. Edit the params : datasetpath, number_of_columns_csv, features, dataset_name, type_of_problem, data
(Change data numpy array, so that, data contains only the relevant features, without the tags and indices)
3. python train.py > dataset.log (This gives the best possible SOM Map Size for your dataset)
4. Results will be present in dataset_name folder in cwd, along with final stats in dataset.log file.
5. python generate_error_plot.py <pickle file in dataset_name folder> <dataset_name> (Error plot is generated)
6. Visualise the results
* Commercial Data sets used-:
1. Wine
2. Iris
3. Abalone
4. Car Evaluation
5. Glass Identification
6. Sonar
* Synthetic (Self-Made) Data sets used-:
1. Corner
2. CrescentFullMoon
3. Ginger Breadman
4. Half Kernal
5. Outliers
6. Two Spirals