We propose a novel Domain-private Factor Detachment (DFD) network to disentangle domain-dependent factors and achieve identity information distillation. Our approach consists of three key components, including Domain-identity Representation Learning (DiRL), Cross-domain Factor Detachment (CdFD) and Cross-domain Aggregation Learning (CAL). Firstly, the proposed DiRL aims to achieve domain-specific information distillation and learn identity-related representations. Specifically, three sub-networks, i.e., NIR sub-Network (NIR-Net), VIS sub-Network (VIS-Net) and IDentity-dependent sub-Network (ID-Net) are designed to learn NIR facial representations, VIS facial representations and identity-dependent representations, respectively, and they can promote each other to facilitate the learning of identity-discriminative representations. Secondly, considering that the entangled modal components in face representations negatively affect the subsequent matching process, to reduce modality-related components, we model the cross-modal face matching problem into three parts, comprising Identity Variation (IV), Inter-Spectrum Variation (ISV) and Identity-Domain Variation (IDV). The CdFD is presented to eliminate ISV components and IDV components by introducing inter-spectrum invariant constraint and identity-domain invariant constraint, so that cross-modal face recognition can be performed under pure identity information differences without modal interference. Finally, the CAL is developed to learn modality-invariant yet discriminative representations by exploring within-class aggregation, negative pair separability and cross-domain positive pair compactness. Experimental results on multiple challenging NIR-VIS face databases demonstrate the effectiveness of the DFD approach.
环境:python 3.6; tensorflow 1.3.0
The pretrained model is released as follow: Link: https://pan.baidu.com/s/133QLNTn9SiQ0CLqg_IsE4g Extraction Code: 0131
运行指令:python DFD_method.py
实验结果:
CASIA NIR-VIS 2.0(first fold)数据集,测试结果Cosine distance度量的Rank-1 准确率为99.4%左右。如下截图:
----DFD ----src (文件夹说明:主要程序目录) ----requirements.txt (文件说明:跑该代码时的python库环境,忽视不必要的库) ----logs (文件夹说明:跑代码过程产生的log记录保存路径) ----models (文件夹说明:跑代码过程保存的模型路径) ----Resnet50_CBAM_xxx_20201013 (文件夹说明:加载的预训练模型) ----models.py (文件说明:网络结构定义) ----DFD_method.py (文件夹说明:main函数,训练和测试一体的main函数) ----facenet.py (文件夹说明:main函数中调用的部分函数,在此文件定义) ----lfw.py (文件夹说明:lfw测试代码,在此文件定义) ----NewPaper_validate_on_CASIA_NIR_VIS_2_0_Rank_1_speedup.py (文件夹说明:跨模态数据库测试代码,在此文件定义)
CASIA NIR-VIS 2.0的first fold训练集路径:
./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/vis_train_1.txt/ ./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/nir_train_1.txt/
CASIA NIR-VIS 2.0的first fold测试集路径:
./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/vis_gallery_1.txt/ ./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/nir_probe_1.txt/
CASIA NIR-VIS 2.0的ten fold训练集路径:
./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/vis_train_10.txt/ ./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/nir_train_10.txt/
CASIA NIR-VIS 2.0的ted fold测试集路径:
./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/vis_gallery_10.txt/ ./../../Datasets/CASIA NIR-VIS 2.0/NIR-VIS-2.0/protocols/nir_probe_10.txt/
Oulu-CASIA NIR-VIS训练集路径:
./../../Datasets/Oulu_40Class/Oulu_20Class_train/
Oulu-CASIA NIR-VIS测试集路径:
./../../Datasets/Oulu_40Class/Oulu_20Class_test/
BUAA NIR-VIS训练集路径:
./../../Datasets/BUAA_VISNIR_train_test/BUAA_VISNIR_train/
BUAA NIR-VIS测试集路径: ./../../Datasets/BUAA_VISNIR_train_test/BUAA_VISNIR_test/
LAMP-HQ NIR-VIS的first fold训练集路径:
./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/train/train_vis1.txt/ ./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/train/train_nir1.txt/
LAMP-HQ NIR-VIS的first fold测试集路径: ./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/test/gallery_vis1.txt/ ./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/test/probe_nir1.txt/
LAMP-HQ NIR-VIS的ten fold训练集路径:
./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/train/train_vis10.txt/ ./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/train/train_nir10.txt/
LAMP-HQ NIR-VIS的ten fold测试集路径: ./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/test/gallery_vis10.txt/ ./../../Datasets/ LAMP_HQ_NIR_VIS /LAMP_HQ/Protocols/test/probe_nir10.txt/
[1] Weipeng Hu, Haifeng Hu, Domain-private Factor Detachment Network for NIR-VIS Face Recognition, IEEE Trans. on Information Forensics and Security, vol. 17, pp. 1435-1449, 2022. DOI: 10.1109/TIFS.2022.3160612
[1] Weipeng Hu, Wenjun Yan, Haifeng Hu, Dual Face Alignment Learning Network for NIR-VIS Face Recognition, IEEE Trans. on Circuits and Systems for Video Technology, vol.32, no.4, pp.2411-2424, 2022. DOI: 10.1109/TCSVT.2021.3081514
[2] Weipeng Hu, Haifeng, Hu, Orthogonal Modality Disentanglement and Representation Alignment Network for NIR-VIS Face Recognition, IEEE Trans. on Circuits and Systems for Video Technology, vol.32, no.6, pp.3630-3643, 2022.
[3] Weipeng Hu, Haifeng Hu, Dual Adversarial Disentanglement and Deep Representation Decorrelation for NIR-VIS Face Recognition, IEEE Trans. on Information Forensics and Security, vol.16, no.1, pp.70-85, 2020. DOI: 10.1109/TIFS.2020.3005314
Part of our code is based on Github's open source project (https://github.com/davidsandberg/facenet).