Skip to content

Commit

Permalink
modify context length for GPTQ + version bump (#25899)
Browse files Browse the repository at this point in the history
* add new arg for gptq

* add tests

* add min version autogptq

* fix order

* skip test

* fix

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <[email protected]>

* fix style

* change model path

---------

Co-authored-by: Arthur <[email protected]>
  • Loading branch information
SunMarc and ArthurZucker authored Sep 6, 2023
1 parent 300d6a4 commit fa6107c
Show file tree
Hide file tree
Showing 3 changed files with 90 additions and 3 deletions.
8 changes: 6 additions & 2 deletions src/transformers/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2546,7 +2546,7 @@ def from_pretrained(
logger.warning(
"You passed `quantization_config` to `from_pretrained` but the model you're loading already has a "
"`quantization_config` attribute and has already quantized weights. However, loading attributes"
" (e.g. disable_exllama, use_cuda_fp16) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
" (e.g. disable_exllama, use_cuda_fp16, max_input_length) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
)
if (
quantization_method_from_args == QuantizationMethod.GPTQ
Expand All @@ -2556,7 +2556,11 @@ def from_pretrained(
raise RuntimeError("GPU is required to quantize or run quantize model.")
elif not (is_optimum_available() and is_auto_gptq_available()):
raise ImportError(
"Loading GPTQ quantized model requires optimum library : `pip install optimum` and auto-gptq library 'pip install auto-gptq'"
"Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
)
elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
raise ImportError(
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
)
else:
# Need to protect the import
Expand Down
7 changes: 6 additions & 1 deletion src/transformers/utils/quantization_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,6 +346,9 @@ class GPTQConfig(QuantizationConfigMixin):
The pad token id. Needed to prepare the dataset when `batch_size` > 1.
disable_exllama (`bool`, *optional*, defaults to `False`):
Whether to use exllama backend. Only works with `bits` = 4.
max_input_length (`int`, *optional*)
The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input
length. It is specific to the exllama backend with act-order.
"""

def __init__(
Expand All @@ -365,6 +368,7 @@ def __init__(
batch_size: int = 1,
pad_token_id: Optional[int] = None,
disable_exllama: bool = False,
max_input_length: Optional[int] = None,
**kwargs,
):
self.quant_method = QuantizationMethod.GPTQ
Expand All @@ -383,11 +387,12 @@ def __init__(
self.batch_size = batch_size
self.pad_token_id = pad_token_id
self.disable_exllama = disable_exllama
self.max_input_length = max_input_length
self.post_init()

def get_loading_attributes(self):
attibutes_dict = copy.deepcopy(self.__dict__)
loading_attibutes = ["disable_exllama", "use_cuda_fp16"]
loading_attibutes = ["disable_exllama", "use_cuda_fp16", "max_input_length"]
loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
return loading_attibutes_dict

Expand Down
78 changes: 78 additions & 0 deletions tests/quantization/gptq/test_gptq.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,8 @@ class GPTQTest(unittest.TestCase):

EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I")
EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of")
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.")
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the")
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,")
Expand Down Expand Up @@ -236,6 +238,82 @@ class GPTQTestDeviceMapExllama(GPTQTest):
disable_exllama = False


@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestActOrderExllama(unittest.TestCase):
"""
Test GPTQ model with exllama kernel and desc_act=True (also known as act-order).
More information on those arguments here:
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
"""

EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is Katie and I am a 20 year")
model_name = "hf-internal-testing/Llama-2-7B-GPTQ"
revision = "gptq-4bit-128g-actorder_True"
input_text = "Hello my name is"

@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""

cls.quantization_config = GPTQConfig(bits=4, disable_exllama=False, max_input_length=4028)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
revision=cls.revision,
torch_dtype=torch.float16,
device_map={"": 0},
quantization_config=cls.quantization_config,
)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)

def check_inference_correctness(self, model):
"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""

# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)

def test_generate_quality(self):
"""
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
"""
self.check_inference_correctness(self.quantized_model)

# this test will fail until the next release of optimum
@pytest.mark.skip
def test_max_input_length(self):
"""
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend.
"""

prompt = "I am in Paris and" * 1000
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
self.assertTrue(inp["input_ids"].shape[1] > 4028)
with self.assertRaises(RuntimeError) as cm:
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
self.assertTrue("temp_state buffer is too small" in str(cm.exception))

prompt = "I am in Paris and" * 500
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
self.assertTrue(inp["input_ids"].shape[1] < 4028)
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)


# fail when run all together
@pytest.mark.skip
@require_accelerate
Expand Down

0 comments on commit fa6107c

Please sign in to comment.