-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
IP-Adapter support for StableDiffusion3ControlNetPipeline
#10363
Conversation
Can you show some examples images? @guiyrt |
Here are a few examples using stabilityai/stable-diffusion-3.5-large-controlnet-canny and InstantX/SD3.5-Large-IP-Adapter: Inference codeimport torch
from PIL import Image
from diffusers.models import SD3ControlNetModel
from diffusers.image_processor import VaeImageProcessor
from diffusers import StableDiffusion3ControlNetPipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
class SD3CannyImageProcessor(VaeImageProcessor):
def __init__(self):
super().__init__(do_normalize=False)
def preprocess(self, image, **kwargs):
image = super().preprocess(image, **kwargs)
image = image * 255 * 0.5 + 0.5
return image
def postprocess(self, image, do_denormalize=True, **kwargs):
do_denormalize = [True] * image.shape[0]
image = super().postprocess(image, **kwargs, do_denormalize=do_denormalize)
return image
model_id = "stabilityai/stable-diffusion-3.5-large"
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "InstantX/SD3.5-Large-IP-Adapter"
controlnet_id= "stabilityai/stable-diffusion-3.5-large-controlnet-canny"
controlnet = SD3ControlNetModel.from_pretrained(
controlnet_id, torch_dtype=torch.float16
)
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id, torch_dtype=torch.float16
)
image_encoder = SiglipVisionModel.from_pretrained(
image_encoder_id, torch_dtype=torch.float16
)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
controlnet=controlnet
)
pipe.image_processor = SD3CannyImageProcessor()
# Load IP Adapter
pipe.load_ip_adapter(ip_adapter_id, revision="f1f54ca369ae759f9278ae9c87d46def9f133c78")
pipe.set_ip_adapter_scale(0.5)
pipe._exclude_from_cpu_offload.append("image_encoder")
pipe.enable_sequential_cpu_offload()
# Input
controlnet_image = Image.open("canny.jpg").convert('RGB')
ip_adapter_img = Image.open("image.jpg").convert('RGB')
# please note that SD3.5 Large is sensitive to highres generation like 1536x1536
image = pipe(
width=1024,
height=1024,
prompt="a fox with trees in the background",
negative_prompt="lowres, low quality, worst quality",
num_images_per_prompt=4,
generator=torch.manual_seed(42),
ip_adapter_image=ip_adapter_img,
control_image=controlnet_image,
controlnet_conditioning_scale=1.0,
guidance_scale=3.5,
num_inference_steps=60,
).images[0]
image.save(f"result.jpg") Here I used the original image as input for the IP-Adapter: These results look awesome, and using the IP-Adapter helps a lot, check some outputs without image prompt: Here I tried to use different image prompts to change the background: |
The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks @guiyrt! The examples are great 🤗
src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Show resolved
Hide resolved
Anything left here @hlky? should we also add IP-Adapter support for inpainting controlnet pipeline? |
Does this work similarly for depth control? Can you share any instructions or code examples of how to use it with depth map? Thanks! |
Yes, it does! The inference code I used to test with the canny controlnet is here: Inference codeimport torch
from PIL import Image
from diffusers.models import SD3ControlNetModel
from diffusers.image_processor import VaeImageProcessor
from diffusers import StableDiffusion3ControlNetPipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
class SD3CannyImageProcessor(VaeImageProcessor):
def __init__(self):
super().__init__(do_normalize=False)
def preprocess(self, image, **kwargs):
image = super().preprocess(image, **kwargs)
image = image * 255 * 0.5 + 0.5
return image
def postprocess(self, image, do_denormalize=True, **kwargs):
do_denormalize = [True] * image.shape[0]
image = super().postprocess(image, **kwargs, do_denormalize=do_denormalize)
return image
model_id = "stabilityai/stable-diffusion-3.5-large"
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "InstantX/SD3.5-Large-IP-Adapter"
controlnet_id= "stabilityai/stable-diffusion-3.5-large-controlnet-canny"
controlnet = SD3ControlNetModel.from_pretrained(
controlnet_id, torch_dtype=torch.float16
)
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id, torch_dtype=torch.float16
)
image_encoder = SiglipVisionModel.from_pretrained(
image_encoder_id, torch_dtype=torch.float16
)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
controlnet=controlnet
)
pipe.image_processor = SD3CannyImageProcessor()
# Load IP Adapter
pipe.load_ip_adapter(ip_adapter_id, revision="f1f54ca369ae759f9278ae9c87d46def9f133c78")
pipe.set_ip_adapter_scale(0.5)
pipe._exclude_from_cpu_offload.append("image_encoder")
pipe.enable_sequential_cpu_offload()
# Input
controlnet_image = Image.open("canny.jpg").convert('RGB')
ip_adapter_img = Image.open("image.jpg").convert('RGB')
# please note that SD3.5 Large is sensitive to highres generation like 1536x1536
image = pipe(
width=1024,
height=1024,
prompt="a fox with trees in the background",
negative_prompt="lowres, low quality, worst quality",
num_images_per_prompt=4,
generator=torch.manual_seed(42),
ip_adapter_image=ip_adapter_img,
control_image=controlnet_image,
controlnet_conditioning_scale=1.0,
guidance_scale=3.5,
num_inference_steps=60,
).images[0]
image.save(f"result.jpg") You just need to change the controlnet_id to stabilityai/stable-diffusion-3.5-large-controlnet-depth and pass a depth image instead of canny image. You also don't need |
What does this PR do?
Inherit from
SD3IPAdapterMixin
to allow image prompting.Fixes #10129
Before submitting
documentation guidelines, and
here are tips on formatting docstrings.
Who can review?
@hlky
@yiyixuxu
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.